Constrained semilinear elliptic systems on $\mathbb R^N$

IF 1.5 3区 数学 Q1 MATHEMATICS
W. Kryszewski, Jakub Siemianowski
{"title":"Constrained semilinear elliptic systems on $\\mathbb R^N$","authors":"W. Kryszewski, Jakub Siemianowski","doi":"10.57262/ade026-0910-459","DOIUrl":null,"url":null,"abstract":"We prove the existence of solutions $u$ in $H^1(\\mathbb{R}^N,\\mathbb{R}^M)$ of the following strongly coupled semilinear system of second order elliptic PDEs on $\\mathbb{R}^N$ \\[ \\mathcal{P}[u] = f(x,u,\\nabla u), \\quad x\\in \\mathbb{R}^N, \\] whith pointwise constraints. We present the construction of the suitable topoligical degree which allows us to solve the above system on bounded domains. The key step in the proof consists of showing that the sequence of solutions of the truncated system is compact in $H^1$ by the use of the so-called tail estimates.","PeriodicalId":53312,"journal":{"name":"Advances in Differential Equations","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2020-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.57262/ade026-0910-459","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We prove the existence of solutions $u$ in $H^1(\mathbb{R}^N,\mathbb{R}^M)$ of the following strongly coupled semilinear system of second order elliptic PDEs on $\mathbb{R}^N$ \[ \mathcal{P}[u] = f(x,u,\nabla u), \quad x\in \mathbb{R}^N, \] whith pointwise constraints. We present the construction of the suitable topoligical degree which allows us to solve the above system on bounded domains. The key step in the proof consists of showing that the sequence of solutions of the truncated system is compact in $H^1$ by the use of the so-called tail estimates.
$\mathbb R^N$上的约束半线性椭圆系统
在$\mathbb{R}^N$\[ \mathcal{P}[u] = f(x,u,\nabla u), \quad x\in \mathbb{R}^N, \]上证明了具有点约束的二阶椭圆偏微分方程强耦合半线性系统解$u$在$H^1(\mathbb{R}^N,\mathbb{R}^M)$上的存在性。我们给出了合适的拓扑度的构造,使我们能够在有界域上求解上述系统。证明的关键步骤是通过使用所谓的尾部估计来证明截断系统的解序列在$H^1$中是紧致的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Differential Equations
Advances in Differential Equations MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
1.90
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Advances in Differential Equations will publish carefully selected, longer research papers on mathematical aspects of differential equations and on applications of the mathematical theory to issues arising in the sciences and in engineering. Papers submitted to this journal should be correct, new and non-trivial. Emphasis will be placed on papers that are judged to be specially timely, and of interest to a substantial number of mathematicians working in this area.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信