Eco-Friendly Chitosan-Based Biodiesel Heterogeneous Catalyst Support Membrane

R. A. Lusiana, R. Nuryanto, N. Prasetya, Resa Putri Sherina, D. Dayanti
{"title":"Eco-Friendly Chitosan-Based Biodiesel Heterogeneous Catalyst Support Membrane","authors":"R. A. Lusiana, R. Nuryanto, N. Prasetya, Resa Putri Sherina, D. Dayanti","doi":"10.14710/jksa.26.2.39-49","DOIUrl":null,"url":null,"abstract":"A chitosan-polyvinyl pyrrolidone K-30 (Cs-PVP.K30) membrane was prepared as a heterogeneous catalyst supporting membrane in the transesterification process in the production of biodiesel from palm oil and methanol through the blend reaction between chitosan (Cs) and polyvinyl pyrrolidone K-30 polymer (PVP K-30). Several membranes were characterized by their physicochemical and catalytic properties. Based on physicochemical data, it was found that including the carbonyl group from PVP K-30 into the chitosan framework correlated with an increase in porosity, hydrophilicity, water absorption, and the degree of swelling of the membrane. The results of the analysis using Fourier Transmittance Infra-red (FTIR) showed the spectra of carbonyl (-C=O) and hydroxyl (-OH) groups at wavenumbers 1648 cm-1 and 3363 cm-1, which shows that the reaction of chitosan alloy with PVP K-30 has been successfully carried out. The catalytic site of the Cs-PVP K30-NaOH membrane in the biodiesel production process was studied under several conversion conditions. It was found that the conversion of biodiesel reached 93.90% with a reaction time of 90 minutes, a temperature of 65°C, and an oil/methanol mole ratio of 1:7.","PeriodicalId":17811,"journal":{"name":"Jurnal Kimia Sains dan Aplikasi","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Kimia Sains dan Aplikasi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14710/jksa.26.2.39-49","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A chitosan-polyvinyl pyrrolidone K-30 (Cs-PVP.K30) membrane was prepared as a heterogeneous catalyst supporting membrane in the transesterification process in the production of biodiesel from palm oil and methanol through the blend reaction between chitosan (Cs) and polyvinyl pyrrolidone K-30 polymer (PVP K-30). Several membranes were characterized by their physicochemical and catalytic properties. Based on physicochemical data, it was found that including the carbonyl group from PVP K-30 into the chitosan framework correlated with an increase in porosity, hydrophilicity, water absorption, and the degree of swelling of the membrane. The results of the analysis using Fourier Transmittance Infra-red (FTIR) showed the spectra of carbonyl (-C=O) and hydroxyl (-OH) groups at wavenumbers 1648 cm-1 and 3363 cm-1, which shows that the reaction of chitosan alloy with PVP K-30 has been successfully carried out. The catalytic site of the Cs-PVP K30-NaOH membrane in the biodiesel production process was studied under several conversion conditions. It was found that the conversion of biodiesel reached 93.90% with a reaction time of 90 minutes, a temperature of 65°C, and an oil/methanol mole ratio of 1:7.
环保壳聚糖基生物柴油多相催化剂载体膜
通过壳聚糖(Cs)与聚乙烯醇吡咯烷酮K-30聚合物(PVP K-30)共混反应,制备了壳聚糖-聚乙烯醇吡咯烷酮K-30 (Cs-PVP. k30)膜,作为棕榈油和甲醇酯交换生产生物柴油过程中的多相催化剂载体膜。对几种膜的理化性质和催化性能进行了表征。理化数据表明,将PVP K-30中的羰基加入壳聚糖骨架中,壳聚糖的孔隙度、亲水性、吸水性和溶胀度均有所提高。傅里叶透射红外(FTIR)分析结果显示,在1648 cm-1和3363 cm-1波数处羰基(-C=O)和羟基(-OH)基团的光谱,表明壳聚糖合金与PVP K-30的反应已经成功进行。在几种转化条件下,研究了Cs-PVP K30-NaOH膜在生物柴油生产过程中的催化位点。结果表明,当反应时间为90分钟,反应温度为65℃,油/甲醇摩尔比为1:7时,生物柴油的转化率可达93.90%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
36
审稿时长
17 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信