Combinatorial proofs of identities for the generalized Leonardo numbers

IF 0.4 Q4 MATHEMATICS
M. Shattuck
{"title":"Combinatorial proofs of identities for the generalized Leonardo numbers","authors":"M. Shattuck","doi":"10.7546/nntdm.2022.28.4.778-790","DOIUrl":null,"url":null,"abstract":"In this paper, we provide combinatorial proofs of several prior identities satisfied by the recently introduced generalized Leonardo numbers, denoted by \\mathcal{L}_{k,n}, as well as derive some new formulas. To do so, we interpret \\mathcal{L}_{k,n} as the enumerator of two classes of linear colored tilings of length n. A comparable treatment is also given for the incomplete generalized Leonardo numbers. Finally, a (p,q)-generalization of \\mathcal{L}_{k,n} is obtained by considering the joint distribution of a pair of statistics on one of the aforementioned classes of colored tilings.","PeriodicalId":44060,"journal":{"name":"Notes on Number Theory and Discrete Mathematics","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2022-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Notes on Number Theory and Discrete Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7546/nntdm.2022.28.4.778-790","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper, we provide combinatorial proofs of several prior identities satisfied by the recently introduced generalized Leonardo numbers, denoted by \mathcal{L}_{k,n}, as well as derive some new formulas. To do so, we interpret \mathcal{L}_{k,n} as the enumerator of two classes of linear colored tilings of length n. A comparable treatment is also given for the incomplete generalized Leonardo numbers. Finally, a (p,q)-generalization of \mathcal{L}_{k,n} is obtained by considering the joint distribution of a pair of statistics on one of the aforementioned classes of colored tilings.
广义Leonardo数恒等式的组合证明
本文给出了最近引入的广义列奥纳多数(\mathcal{L}_{k,n})所满足的几个先验恒等式的组合证明,并导出了一些新的公式。为此,我们将\mathcal{L}_{k,n}解释为长度为n的两类线性彩色拼接的枚举数。对于不完全广义列奥纳多数也给出了类似的处理。最后,通过考虑上述一类彩色瓷砖上的一对统计量的联合分布,得到了\mathcal{L}_{k,n}的一个(p,q)概化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
33.30%
发文量
71
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信