Coding photonic paths based on valley-protected topological phonic crystal

IF 1.1 4区 物理与天体物理 Q4 NANOSCIENCE & NANOTECHNOLOGY
Yun-tuan Fang, Jia-Chen Liu
{"title":"Coding photonic paths based on valley-protected topological phonic crystal","authors":"Yun-tuan Fang, Jia-Chen Liu","doi":"10.1117/1.JNP.16.036009","DOIUrl":null,"url":null,"abstract":"Abstract To achieve a flexible and reconfigurable topological edge state waveguide, we construct a valley photonic crystal (VPC) with liquid crystal filled rods. The permittivity of the two inequivalent rods in a unit is determined through the external voltage, which leads to a VPC with different valley topological phases. The external voltage is controlled by the codes of “0” and “1” on a control panel. Through programming the codes, arbitrary paths of topological edge states are achieved. The results were demonstrated by field propagation simulations.","PeriodicalId":16449,"journal":{"name":"Journal of Nanophotonics","volume":"16 1","pages":"036009 - 036009"},"PeriodicalIF":1.1000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanophotonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1117/1.JNP.16.036009","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract To achieve a flexible and reconfigurable topological edge state waveguide, we construct a valley photonic crystal (VPC) with liquid crystal filled rods. The permittivity of the two inequivalent rods in a unit is determined through the external voltage, which leads to a VPC with different valley topological phases. The external voltage is controlled by the codes of “0” and “1” on a control panel. Through programming the codes, arbitrary paths of topological edge states are achieved. The results were demonstrated by field propagation simulations.
基于谷保护拓扑声子晶体的光子路径编码
摘要为了实现柔性和可重构的拓扑边缘态波导,我们构造了一种带有液晶填充棒的谷光子晶体(VPC)。一个单元中两个不等棒的介电常数是通过外部电压确定的,这导致了具有不同谷拓扑相位的VPC。外部电压由控制面板上的代码“0”和“1”控制。通过编程实现了拓扑边状态的任意路径。通过场传播模拟验证了结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Nanophotonics
Journal of Nanophotonics 工程技术-光学
CiteScore
2.60
自引率
6.70%
发文量
42
审稿时长
3 months
期刊介绍: The Journal of Nanophotonics publishes peer-reviewed papers focusing on the fabrication and application of nanostructures that facilitate the generation, propagation, manipulation, and detection of light from the infrared to the ultraviolet regimes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信