{"title":"Experiments and Lattice-Boltzmann Simulation of Flow in a Vertically Aligned Gearbox","authors":"B. Niebles Atencio, H. Yao, V. Chernoray","doi":"10.1115/1.4062813","DOIUrl":null,"url":null,"abstract":"\n This paper presents a study of the oil flow in a vertically arranged FZG gearbox. The splash and churning losses are experimentally evaluated using measurements of the resistance torque. Using high speed imaging, the instantaneous oil splashing inside the gearbox is also presented and compared with Computational Fluid Dynamics (CFD) results from the Lattice-Boltzmann method (LBM), instead of the traditional grid-based finite volume method. Four different configurations, including a spur gear based on the standard FZG geometry and a disc pair wheel-pinion with the same tip diameters of the standard geometries are used. The experiments cover a range from 500 to 3000 rpm and three oil levels are studied. For the CFD simulations, the same oil levels and rotational speeds are used. The experimental results indicate torque differences depending on the oil level and the configuration. The splashing pattern is also different from the standard horizontal FZG case, which is typically studied in the literature. On the other hand, the CFD simulations and flow visualization experiments are in relative agreement with one another. The similarities and differences in the torque values for the different configurations and the splashing pattern for both experiments and CFD simulations are analyzed and discussed.","PeriodicalId":17586,"journal":{"name":"Journal of Tribology-transactions of The Asme","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2023-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Tribology-transactions of The Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4062813","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents a study of the oil flow in a vertically arranged FZG gearbox. The splash and churning losses are experimentally evaluated using measurements of the resistance torque. Using high speed imaging, the instantaneous oil splashing inside the gearbox is also presented and compared with Computational Fluid Dynamics (CFD) results from the Lattice-Boltzmann method (LBM), instead of the traditional grid-based finite volume method. Four different configurations, including a spur gear based on the standard FZG geometry and a disc pair wheel-pinion with the same tip diameters of the standard geometries are used. The experiments cover a range from 500 to 3000 rpm and three oil levels are studied. For the CFD simulations, the same oil levels and rotational speeds are used. The experimental results indicate torque differences depending on the oil level and the configuration. The splashing pattern is also different from the standard horizontal FZG case, which is typically studied in the literature. On the other hand, the CFD simulations and flow visualization experiments are in relative agreement with one another. The similarities and differences in the torque values for the different configurations and the splashing pattern for both experiments and CFD simulations are analyzed and discussed.
期刊介绍:
The Journal of Tribology publishes over 100 outstanding technical articles of permanent interest to the tribology community annually and attracts articles by tribologists from around the world. The journal features a mix of experimental, numerical, and theoretical articles dealing with all aspects of the field. In addition to being of interest to engineers and other scientists doing research in the field, the Journal is also of great importance to engineers who design or use mechanical components such as bearings, gears, seals, magnetic recording heads and disks, or prosthetic joints, or who are involved with manufacturing processes.
Scope: Friction and wear; Fluid film lubrication; Elastohydrodynamic lubrication; Surface properties and characterization; Contact mechanics; Magnetic recordings; Tribological systems; Seals; Bearing design and technology; Gears; Metalworking; Lubricants; Artificial joints