Extremal Problems for Graphical Function-Indices and f-Weighted Adjacency Matrix

IF 1 Q1 MATHEMATICS
Xueliang Li, Danni Peng
{"title":"Extremal Problems for Graphical Function-Indices and f-Weighted Adjacency Matrix","authors":"Xueliang Li, Danni Peng","doi":"10.47443/dml.2021.s210","DOIUrl":null,"url":null,"abstract":"Abstract Let f(x, y) (f(x)) be a symmetric real function (real function) and G = (V,E) be a graph. Denote by di the degree of a vertex i in G. The graphical function-index TIf (G) (Hf (G)) of G with edge-weight (vertex-weight) function f(x, y) (f(x)) is defined as TIf (G) = ∑ uv∈E f(du, dv) (Hf (G) = ∑ u∈V f(du)). We can also get a weighted adjacency matrix from the edge-weighted graph, i.e., Af (G) = (afij) where a f ij = f(di, dj) if vertices i and j are adjacent in G, and 0 otherwise. This matrix is simply referred to as the f -weighted adjacency matrix. One can see that the concepts of graphical function-indices and f -weighted adjacency matrix can cover all the degree-based graphical indices and degree-based adjacency matrices of graphs, such as the Zagreb indices, Randić index, ABC-index, etc., and the Randić matrix, ABC-matrix, GA-matrix, etc. So, for the graphical function-indices TIf (G) and Hf (G) and the f -weighted adjacency matrix Af (G) of a graph G, one can think about finding unified ways to study the extremal problems and spectral problems. This survey is intended to sum up the results done so far on these problems.","PeriodicalId":36023,"journal":{"name":"Discrete Mathematics Letters","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2022-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47443/dml.2021.s210","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 10

Abstract

Abstract Let f(x, y) (f(x)) be a symmetric real function (real function) and G = (V,E) be a graph. Denote by di the degree of a vertex i in G. The graphical function-index TIf (G) (Hf (G)) of G with edge-weight (vertex-weight) function f(x, y) (f(x)) is defined as TIf (G) = ∑ uv∈E f(du, dv) (Hf (G) = ∑ u∈V f(du)). We can also get a weighted adjacency matrix from the edge-weighted graph, i.e., Af (G) = (afij) where a f ij = f(di, dj) if vertices i and j are adjacent in G, and 0 otherwise. This matrix is simply referred to as the f -weighted adjacency matrix. One can see that the concepts of graphical function-indices and f -weighted adjacency matrix can cover all the degree-based graphical indices and degree-based adjacency matrices of graphs, such as the Zagreb indices, Randić index, ABC-index, etc., and the Randić matrix, ABC-matrix, GA-matrix, etc. So, for the graphical function-indices TIf (G) and Hf (G) and the f -weighted adjacency matrix Af (G) of a graph G, one can think about finding unified ways to study the extremal problems and spectral problems. This survey is intended to sum up the results done so far on these problems.
图形函数指数和f-加权邻接矩阵的极值问题
设f(x, y) (f(x))为对称实数函数(实数函数),G = (V,E)为图。用di表示G中顶点i的度。G的图形函数-索引TIf (G) (Hf (G))与边权(顶点权)函数f(x, y) (f(x)) (f(x))定义为TIf (G) =∑uv∈E f(du, dv) (Hf (G) =∑u∈V f(du))。我们也可以从边加权图中得到一个加权邻接矩阵,即Af (G) = (afij),其中如果顶点i和j在G中相邻,则afij = f(di, dj),否则为0。这个矩阵被简单地称为f加权邻接矩阵。可见,图函数指数和f加权邻接矩阵的概念可以涵盖图的所有基于度的图指数和基于度的邻接矩阵,如Zagreb指数、randic指数、abc -指数等,以及randic矩阵、abc -矩阵、ga -矩阵等。因此,对于图G的图函数指标TIf (G)和Hf (G)以及f加权邻接矩阵Af (G),可以考虑寻找统一的方法来研究极值问题和谱问题。这项调查旨在总结迄今为止在这些问题上所取得的成果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete Mathematics Letters
Discrete Mathematics Letters Mathematics-Discrete Mathematics and Combinatorics
CiteScore
1.50
自引率
12.50%
发文量
47
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信