Research on seismic absorption of high-speed railway segmental assembled round-end hollow pier with low yield point steel connection buckle

IF 0.7 Q4 ENGINEERING, MECHANICAL
Hao Li, Yuanqing Xu, Hongjie Zhang, Shiyun Qi
{"title":"Research on seismic absorption of high-speed railway segmental assembled round-end hollow pier with low yield point steel connection buckle","authors":"Hao Li, Yuanqing Xu, Hongjie Zhang, Shiyun Qi","doi":"10.21595/jve.2022.22859","DOIUrl":null,"url":null,"abstract":"The research aims to enhance the seismic safety of the segmental assembled round end hollow pier (SAREHP) of high-speed railway in high intensity seismic regions and ensure the repairability of the pier after earthquake. A low yield point steel connection buckle (LYPSCB), which is easy to be installed and to be replaced after earthquake damage, was proposed as a new seismic absorption measure for the pier, and the seismic absorption effect of the LYPSCB was deeply studied. Firstly, the nonlinear numerical model of the SAREHP with energy dissipation bar (SAREHP-EDB) was established according to the pseudo-static test results of the pier completed. Based on the numerical model of the SAREHP-EDB, the SAREHP with the LYPSCB (SAREHP-LYPSCB) was established and corrected. Subsequently, the influence of the LYPSCB on the hysteretic behavior of the SAREHP was studied, and the hysteretic behavior of the SAREHP-LYPSCB was comprehensively compared with a reference to the SAREHP-EDB. Furthermore, considering the far-field seismic wave and the near-field seismic wave with or without pulse, the seismic absorption effect of the LYPSCB was revealed through dynamic time history analysis method. The research results indicated that, by increasing the section contribution rate of the LYPSCB, the horizontal resistance, loading and unloading stiffness as well as energy dissipation capacity of the SAREHP-LYPSCB are significantly improved. However, the residual displacement of the pier is also indirectly increased. Therefore, it is suggested that the section contribution rate of the LYPSCB is controlled and designed in combination with the seismic target displacement and self-centering capacity demand of pier. The hysteretic behavior of the SAREHP-LYPSCB is better than that of the SAREHP-EDB, which indicated that the LYPSCB possesses better seismic absorption effect. Note that the seismic absorption effect of the LYPSCB is more obvious in resisting strong earthquake, in which the seismic absorption rate can reach 80 %. The near-field pulse seismic wave has the greatest impact on the seismic response of the SAREHP-LYPSCB compared with other types of seismic wave, which should be paid special attention.","PeriodicalId":49956,"journal":{"name":"Journal of Vibroengineering","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vibroengineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21595/jve.2022.22859","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The research aims to enhance the seismic safety of the segmental assembled round end hollow pier (SAREHP) of high-speed railway in high intensity seismic regions and ensure the repairability of the pier after earthquake. A low yield point steel connection buckle (LYPSCB), which is easy to be installed and to be replaced after earthquake damage, was proposed as a new seismic absorption measure for the pier, and the seismic absorption effect of the LYPSCB was deeply studied. Firstly, the nonlinear numerical model of the SAREHP with energy dissipation bar (SAREHP-EDB) was established according to the pseudo-static test results of the pier completed. Based on the numerical model of the SAREHP-EDB, the SAREHP with the LYPSCB (SAREHP-LYPSCB) was established and corrected. Subsequently, the influence of the LYPSCB on the hysteretic behavior of the SAREHP was studied, and the hysteretic behavior of the SAREHP-LYPSCB was comprehensively compared with a reference to the SAREHP-EDB. Furthermore, considering the far-field seismic wave and the near-field seismic wave with or without pulse, the seismic absorption effect of the LYPSCB was revealed through dynamic time history analysis method. The research results indicated that, by increasing the section contribution rate of the LYPSCB, the horizontal resistance, loading and unloading stiffness as well as energy dissipation capacity of the SAREHP-LYPSCB are significantly improved. However, the residual displacement of the pier is also indirectly increased. Therefore, it is suggested that the section contribution rate of the LYPSCB is controlled and designed in combination with the seismic target displacement and self-centering capacity demand of pier. The hysteretic behavior of the SAREHP-LYPSCB is better than that of the SAREHP-EDB, which indicated that the LYPSCB possesses better seismic absorption effect. Note that the seismic absorption effect of the LYPSCB is more obvious in resisting strong earthquake, in which the seismic absorption rate can reach 80 %. The near-field pulse seismic wave has the greatest impact on the seismic response of the SAREHP-LYPSCB compared with other types of seismic wave, which should be paid special attention.
高铁低屈服点钢连接扣节段拼装圆端空心墩减震研究
本研究旨在提高高烈度地震区高速铁路节段拼装圆端空心桥墩(SAREHP)的抗震安全性,确保桥墩在地震后的可修复性。提出了一种地震损伤后易于安装和更换的低屈服点钢连接扣(LYPSCB)作为桥墩的新型减震措施,并对其减震效果进行了深入研究。首先,根据桥墩的拟静力试验结果,建立了带消能杆的SAREHP非线性数值模型(SAREHP-EDB)。基于SAREHP-EDB的数值模型,建立并修正了带有LYPSCB的SAREHP(SAREHP-LYPSCB)。随后,研究了LYPSCB对SAREHP滞回性能的影响,并将SAREHP-LYPSCB的滞回性能与参考SAREHP-EDB进行了全面比较。此外,考虑到有脉冲或无脉冲的远场地震波和近场地震波,通过动态时程分析方法揭示了LYPSCB的地震吸收效应。研究结果表明,通过提高LYPSCB的截面贡献率,SAREHP-LYPSCB在水平阻力、荷载和卸载刚度以及耗能能力方面都得到了显著提高。然而,桥墩的残余位移也间接增加。因此,建议结合地震目标位移和桥墩自定心能力要求,对LYPSCB的截面贡献率进行控制和设计。SAREHP-LYPSCB的滞回性能优于SAREHP-EDB,表明LYPSCB具有更好的减震效果。值得注意的是,LYPSCB的减震效果在抵抗强震时更为明显,其中减震率可达80%。与其他类型的地震波相比,近场脉冲地震波对SAREHP-LYPSCB的地震响应影响最大,应特别注意。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Vibroengineering
Journal of Vibroengineering 工程技术-工程:机械
CiteScore
1.70
自引率
0.00%
发文量
97
审稿时长
4.5 months
期刊介绍: Journal of VIBROENGINEERING (JVE) ISSN 1392-8716 is a prestigious peer reviewed International Journal specializing in theoretical and practical aspects of Vibration Engineering. It is indexed in ESCI and other major databases. Published every 1.5 months (8 times yearly), the journal attracts attention from the International Engineering Community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信