Cyclic Composition operators on Segal-Bargmann space

IF 0.3 Q4 MATHEMATICS
G. Ramesh, B. S. Ranjan, D. Naidu
{"title":"Cyclic Composition operators on Segal-Bargmann space","authors":"G. Ramesh, B. S. Ranjan, D. Naidu","doi":"10.1515/conop-2022-0133","DOIUrl":null,"url":null,"abstract":"Abstract We study the cyclic, supercyclic and hypercyclic properties of a composition operator Cϕ on the Segal-Bargmann space ℋ(ℰ), where ϕ(z) = Az + b, A is a bounded linear operator on ℰ, b ∈ ℰ with ||A|| ⩽ 1 and A*b belongs to the range of (I – A*A)½. Specifically, under some conditions on the symbol ϕ we show that if Cϕ is cyclic then A* is cyclic but the converse need not be true. We also show that if Cϕ* is cyclic then A is cyclic. Further we show that there is no supercyclic composition operator on the space ℋ(ℰ) for certain class of symbols ϕ.","PeriodicalId":53800,"journal":{"name":"Concrete Operators","volume":"9 1","pages":"127 - 138"},"PeriodicalIF":0.3000,"publicationDate":"2020-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Concrete Operators","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/conop-2022-0133","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract We study the cyclic, supercyclic and hypercyclic properties of a composition operator Cϕ on the Segal-Bargmann space ℋ(ℰ), where ϕ(z) = Az + b, A is a bounded linear operator on ℰ, b ∈ ℰ with ||A|| ⩽ 1 and A*b belongs to the range of (I – A*A)½. Specifically, under some conditions on the symbol ϕ we show that if Cϕ is cyclic then A* is cyclic but the converse need not be true. We also show that if Cϕ* is cyclic then A is cyclic. Further we show that there is no supercyclic composition operator on the space ℋ(ℰ) for certain class of symbols ϕ.
Segal Bargmann空间上的循环复合算子
摘要我们研究了Segal Bargmann空间上复合算子C的循环、超循环和超循环性质ℋ(ℰ), 其中ξ(z)=Az+b,A是上的有界线性算子ℰ, b∈ℰ 其中||A||⩽1和A*b属于(I–A*A)½的范围。具体来说,在符号ξ上的一些条件下,我们证明了如果Cξ是循环的,那么A*是循环的但反过来不必成立。我们还证明了如果Cξ*是循环的,那么A是循环的。进一步证明了在空间上不存在超循环复合算子ℋ(ℰ) 对于特定类别的符号。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Concrete Operators
Concrete Operators MATHEMATICS-
CiteScore
1.00
自引率
16.70%
发文量
10
审稿时长
22 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信