Thermal stress distribution of multi-layered composite tubes affected by braiding angle

IF 2.2 4区 工程技术 Q1 MATERIALS SCIENCE, TEXTILES
Zhaohua Huang, Wensuo Ma, Chenhui Jia, Xian-guo Lei, Zhuangya Zhang
{"title":"Thermal stress distribution of multi-layered composite tubes affected by braiding angle","authors":"Zhaohua Huang, Wensuo Ma, Chenhui Jia, Xian-guo Lei, Zhuangya Zhang","doi":"10.1177/15589250221144008","DOIUrl":null,"url":null,"abstract":"Braided tubular composites have been widely applied in various industries, such as aerospace, automobile, and sports, due to their light weight, high fatigue resistance, and good corrosion resistance. It is necessary to study the effect of the preform parameters on the thermodynamic behavior of braided tubular composites. A thermoelastic model of braided multi-layered tubes was developed to investigate the effect of changing the braiding angle on the thermal stress distribution. The thermal stress distributions of different structures were analyzed based on the model. The analysis results show that the layer-by-layer braiding angle critically affects the gradient of the axial thermal stress. The change rates of the braiding angle also significantly affect the gradient of the radial thermal stress. The theoretical results were verified by finite element analysis. These results are beneficial to the optimal design of braided composite tubes subjected to thermal load.","PeriodicalId":15718,"journal":{"name":"Journal of Engineered Fibers and Fabrics","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineered Fibers and Fabrics","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/15589250221144008","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, TEXTILES","Score":null,"Total":0}
引用次数: 1

Abstract

Braided tubular composites have been widely applied in various industries, such as aerospace, automobile, and sports, due to their light weight, high fatigue resistance, and good corrosion resistance. It is necessary to study the effect of the preform parameters on the thermodynamic behavior of braided tubular composites. A thermoelastic model of braided multi-layered tubes was developed to investigate the effect of changing the braiding angle on the thermal stress distribution. The thermal stress distributions of different structures were analyzed based on the model. The analysis results show that the layer-by-layer braiding angle critically affects the gradient of the axial thermal stress. The change rates of the braiding angle also significantly affect the gradient of the radial thermal stress. The theoretical results were verified by finite element analysis. These results are beneficial to the optimal design of braided composite tubes subjected to thermal load.
编织角度对多层复合材料管热应力分布的影响
编织管复合材料因其重量轻、抗疲劳性高、耐腐蚀性好,已广泛应用于航空航天、汽车、体育等各个行业。有必要研究预制件参数对编织管复合材料热力学行为的影响。建立了多层编织管的热弹性模型,研究了编织角度对热应力分布的影响。基于该模型分析了不同结构的热应力分布。分析结果表明,分层编织角度对轴向热应力梯度有重要影响。编织角度的变化率也显著影响径向热应力的梯度。通过有限元分析对理论结果进行了验证。这些结果有利于复合材料编织管在热载荷作用下的优化设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Engineered Fibers and Fabrics
Journal of Engineered Fibers and Fabrics 工程技术-材料科学:纺织
CiteScore
5.00
自引率
6.90%
发文量
41
审稿时长
4 months
期刊介绍: Journal of Engineered Fibers and Fabrics is a peer-reviewed, open access journal which aims to facilitate the rapid and wide dissemination of research in the engineering of textiles, clothing and fiber based structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信