An Introduction to Bayesian Knowledge Tracing with pyBKT

Psych Pub Date : 2023-07-23 DOI:10.3390/psych5030050
O. Bulut, Jinnie Shin, S. Yildirim-Erbasli, Guher Gorgun, Z. Pardos
{"title":"An Introduction to Bayesian Knowledge Tracing with pyBKT","authors":"O. Bulut, Jinnie Shin, S. Yildirim-Erbasli, Guher Gorgun, Z. Pardos","doi":"10.3390/psych5030050","DOIUrl":null,"url":null,"abstract":"This study aims to introduce Bayesian Knowledge Tracing (BKT), a probabilistic model used in educational data mining to estimate learners’ knowledge states over time. It also provides a practical guide to estimating BKT models using the pyBKT library available in Python. The first section presents an overview of BKT by explaining its theoretical foundations and advantages in modeling individual learning processes. In the second section, we describe different variants of the standard BKT model based on item response theory (IRT). Next, we demonstrate the estimation of BKT with the pyBKT library in Python, outlining data pre-processing steps, parameter estimation, and model evaluation. Different cases of knowledge tracing tasks illustrate how BKT estimates learners’ knowledge states and evaluates prediction accuracy. The results highlight the utility of BKT in capturing learners’ knowledge states dynamically. We also show that the model parameters of BKT resemble the parameters from logistic IRT models.","PeriodicalId":93139,"journal":{"name":"Psych","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psych","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/psych5030050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This study aims to introduce Bayesian Knowledge Tracing (BKT), a probabilistic model used in educational data mining to estimate learners’ knowledge states over time. It also provides a practical guide to estimating BKT models using the pyBKT library available in Python. The first section presents an overview of BKT by explaining its theoretical foundations and advantages in modeling individual learning processes. In the second section, we describe different variants of the standard BKT model based on item response theory (IRT). Next, we demonstrate the estimation of BKT with the pyBKT library in Python, outlining data pre-processing steps, parameter estimation, and model evaluation. Different cases of knowledge tracing tasks illustrate how BKT estimates learners’ knowledge states and evaluates prediction accuracy. The results highlight the utility of BKT in capturing learners’ knowledge states dynamically. We also show that the model parameters of BKT resemble the parameters from logistic IRT models.
用pyBKT实现贝叶斯知识跟踪
本研究旨在介绍贝叶斯知识跟踪(BKT),这是一种用于教育数据挖掘的概率模型,用于估计学习者随时间的知识状态。它还提供了使用Python中可用的pyBKT库估计BKT模型的实用指南。第一节通过解释BKT在建模个人学习过程中的理论基础和优势,概述了BKT。在第二节中,我们描述了基于项目反应理论(IRT)的标准BKT模型的不同变体。接下来,我们将使用Python中的pyBKT库演示BKT的估计,概述数据预处理步骤、参数估计和模型评估。知识追踪任务的不同案例说明了BKT如何估计学习者的知识状态并评估预测准确性。研究结果强调了BKT在动态捕捉学习者知识状态方面的效用。我们还表明,BKT的模型参数与逻辑IRT模型的参数相似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信