Extending an Identified Four-Parameter IRT Model: The Confirmatory Set-4PNO Model

IF 1.9 3区 心理学 Q2 EDUCATION & EDUCATIONAL RESEARCH
Justin L. Kern
{"title":"Extending an Identified Four-Parameter IRT Model: The Confirmatory Set-4PNO Model","authors":"Justin L. Kern","doi":"10.3102/10769986231181587","DOIUrl":null,"url":null,"abstract":"Given the frequent presence of slipping and guessing in item responses, models for the inclusion of their effects are highly important. Unfortunately, the most common model for their inclusion, the four-parameter item response theory model, potentially has severe deficiencies related to its possible unidentifiability. With this issue in mind, the dyad four-parameter normal ogive (Dyad-4PNO) model was developed. This model allows for slipping and guessing effects by including binary augmented variables—each indicated by two items whose probabilities are determined by slipping and guessing parameters—which are subsequently related to a continuous latent trait through a two-parameter model. Furthermore, the Dyad-4PNO assumes uncertainty as to which items are paired on each augmented variable. In this way, the model is inherently exploratory. In the current article, the new model, called the Set-4PNO model, is an extension of the Dyad-4PNO in two ways. First, the new model allows for more than two items per augmented variable. Second, these item sets are assumed to be fixed, that is, the model is confirmatory. This article discusses this extension and introduces a Gibbs sampling algorithm to estimate the model. A Monte Carlo simulation study shows the efficacy of the algorithm at estimating the model parameters. A real data example shows that this extension may be viable in practice, with the data fitting a more general Set-4PNO model (i.e., more than two items per augmented variable) better than the Dyad-4PNO, 2PNO, 3PNO, and 4PNO models.","PeriodicalId":48001,"journal":{"name":"Journal of Educational and Behavioral Statistics","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Educational and Behavioral Statistics","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.3102/10769986231181587","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
引用次数: 0

Abstract

Given the frequent presence of slipping and guessing in item responses, models for the inclusion of their effects are highly important. Unfortunately, the most common model for their inclusion, the four-parameter item response theory model, potentially has severe deficiencies related to its possible unidentifiability. With this issue in mind, the dyad four-parameter normal ogive (Dyad-4PNO) model was developed. This model allows for slipping and guessing effects by including binary augmented variables—each indicated by two items whose probabilities are determined by slipping and guessing parameters—which are subsequently related to a continuous latent trait through a two-parameter model. Furthermore, the Dyad-4PNO assumes uncertainty as to which items are paired on each augmented variable. In this way, the model is inherently exploratory. In the current article, the new model, called the Set-4PNO model, is an extension of the Dyad-4PNO in two ways. First, the new model allows for more than two items per augmented variable. Second, these item sets are assumed to be fixed, that is, the model is confirmatory. This article discusses this extension and introduces a Gibbs sampling algorithm to estimate the model. A Monte Carlo simulation study shows the efficacy of the algorithm at estimating the model parameters. A real data example shows that this extension may be viable in practice, with the data fitting a more general Set-4PNO model (i.e., more than two items per augmented variable) better than the Dyad-4PNO, 2PNO, 3PNO, and 4PNO models.
扩展已识别的四参数IRT模型:验证性集合4PNO模型
考虑到项目反应中经常出现失误和猜测,纳入其影响的模型非常重要。不幸的是,最常见的包含它们的模型,四参数项目反应理论模型,由于其可能的不可识别性,可能存在严重的缺陷。考虑到这个问题,提出了二元四参数正态ogive(dyad-4PNO)模型。该模型通过包括二元增广变量(每个变量由两个项目表示,其概率由滑动和猜测参数决定)来实现滑动和猜测效应,这些变量随后通过双参数模型与连续的潜在特征相关。此外,Dyad-4PNO假设了每个增广变量上哪些项目配对的不确定性。通过这种方式,该模型本质上是探索性的。在当前的文章中,称为Set-4PNO模型的新模型在两个方面是Dyad-4PNO的扩展。首先,新模型允许每个增广变量包含两个以上的项目。其次,假设这些项目集是固定的,也就是说,模型是可验证的。本文讨论了这种扩展,并介绍了一种吉布斯采样算法来估计模型。蒙特卡罗模拟研究表明了该算法在估计模型参数方面的有效性。一个真实的数据示例表明,这种扩展在实践中可能是可行的,与Dyad-4PNO、2PNO、3PNO和4PNO模型相比,数据更适合更通用的Set-4PNO模型(即,每个增广变量超过两个项目)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.40
自引率
4.20%
发文量
21
期刊介绍: Journal of Educational and Behavioral Statistics, sponsored jointly by the American Educational Research Association and the American Statistical Association, publishes articles that are original and provide methods that are useful to those studying problems and issues in educational or behavioral research. Typical papers introduce new methods of analysis. Critical reviews of current practice, tutorial presentations of less well known methods, and novel applications of already-known methods are also of interest. Papers discussing statistical techniques without specific educational or behavioral interest or focusing on substantive results without developing new statistical methods or models or making novel use of existing methods have lower priority. Simulation studies, either to demonstrate properties of an existing method or to compare several existing methods (without providing a new method), also have low priority. The Journal of Educational and Behavioral Statistics provides an outlet for papers that are original and provide methods that are useful to those studying problems and issues in educational or behavioral research. Typical papers introduce new methods of analysis, provide properties of these methods, and an example of use in education or behavioral research. Critical reviews of current practice, tutorial presentations of less well known methods, and novel applications of already-known methods are also sometimes accepted. Papers discussing statistical techniques without specific educational or behavioral interest or focusing on substantive results without developing new statistical methods or models or making novel use of existing methods have lower priority. Simulation studies, either to demonstrate properties of an existing method or to compare several existing methods (without providing a new method), also have low priority.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信