{"title":"Extending an Identified Four-Parameter IRT Model: The Confirmatory Set-4PNO Model","authors":"Justin L. Kern","doi":"10.3102/10769986231181587","DOIUrl":null,"url":null,"abstract":"Given the frequent presence of slipping and guessing in item responses, models for the inclusion of their effects are highly important. Unfortunately, the most common model for their inclusion, the four-parameter item response theory model, potentially has severe deficiencies related to its possible unidentifiability. With this issue in mind, the dyad four-parameter normal ogive (Dyad-4PNO) model was developed. This model allows for slipping and guessing effects by including binary augmented variables—each indicated by two items whose probabilities are determined by slipping and guessing parameters—which are subsequently related to a continuous latent trait through a two-parameter model. Furthermore, the Dyad-4PNO assumes uncertainty as to which items are paired on each augmented variable. In this way, the model is inherently exploratory. In the current article, the new model, called the Set-4PNO model, is an extension of the Dyad-4PNO in two ways. First, the new model allows for more than two items per augmented variable. Second, these item sets are assumed to be fixed, that is, the model is confirmatory. This article discusses this extension and introduces a Gibbs sampling algorithm to estimate the model. A Monte Carlo simulation study shows the efficacy of the algorithm at estimating the model parameters. A real data example shows that this extension may be viable in practice, with the data fitting a more general Set-4PNO model (i.e., more than two items per augmented variable) better than the Dyad-4PNO, 2PNO, 3PNO, and 4PNO models.","PeriodicalId":48001,"journal":{"name":"Journal of Educational and Behavioral Statistics","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Educational and Behavioral Statistics","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.3102/10769986231181587","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
引用次数: 0
Abstract
Given the frequent presence of slipping and guessing in item responses, models for the inclusion of their effects are highly important. Unfortunately, the most common model for their inclusion, the four-parameter item response theory model, potentially has severe deficiencies related to its possible unidentifiability. With this issue in mind, the dyad four-parameter normal ogive (Dyad-4PNO) model was developed. This model allows for slipping and guessing effects by including binary augmented variables—each indicated by two items whose probabilities are determined by slipping and guessing parameters—which are subsequently related to a continuous latent trait through a two-parameter model. Furthermore, the Dyad-4PNO assumes uncertainty as to which items are paired on each augmented variable. In this way, the model is inherently exploratory. In the current article, the new model, called the Set-4PNO model, is an extension of the Dyad-4PNO in two ways. First, the new model allows for more than two items per augmented variable. Second, these item sets are assumed to be fixed, that is, the model is confirmatory. This article discusses this extension and introduces a Gibbs sampling algorithm to estimate the model. A Monte Carlo simulation study shows the efficacy of the algorithm at estimating the model parameters. A real data example shows that this extension may be viable in practice, with the data fitting a more general Set-4PNO model (i.e., more than two items per augmented variable) better than the Dyad-4PNO, 2PNO, 3PNO, and 4PNO models.
期刊介绍:
Journal of Educational and Behavioral Statistics, sponsored jointly by the American Educational Research Association and the American Statistical Association, publishes articles that are original and provide methods that are useful to those studying problems and issues in educational or behavioral research. Typical papers introduce new methods of analysis. Critical reviews of current practice, tutorial presentations of less well known methods, and novel applications of already-known methods are also of interest. Papers discussing statistical techniques without specific educational or behavioral interest or focusing on substantive results without developing new statistical methods or models or making novel use of existing methods have lower priority. Simulation studies, either to demonstrate properties of an existing method or to compare several existing methods (without providing a new method), also have low priority. The Journal of Educational and Behavioral Statistics provides an outlet for papers that are original and provide methods that are useful to those studying problems and issues in educational or behavioral research. Typical papers introduce new methods of analysis, provide properties of these methods, and an example of use in education or behavioral research. Critical reviews of current practice, tutorial presentations of less well known methods, and novel applications of already-known methods are also sometimes accepted. Papers discussing statistical techniques without specific educational or behavioral interest or focusing on substantive results without developing new statistical methods or models or making novel use of existing methods have lower priority. Simulation studies, either to demonstrate properties of an existing method or to compare several existing methods (without providing a new method), also have low priority.