Optimal Concavity for Newtonian Potentials

IF 0.2 Q4 MATHEMATICS
P. Salani
{"title":"Optimal Concavity for Newtonian Potentials","authors":"P. Salani","doi":"10.6092/ISSN.2240-2829/7795","DOIUrl":null,"url":null,"abstract":"In this note I give a short overview about convexity properties of solutions to elliptic equations in convex domains and convex rings and show a result about the optimal concavity of the Newtonian potential of a bounded convex domain in ℝ n , n ≥ 3, namely: if the Newtonian potential of a bounded domain is ”sufficiently concave”, then the domain is necessarily a ball. This result can be considered an unconventional overdetermined problem. This paper is based on a talk given by the author in Bologna at the ”Bruno Pini Mathematical Analysis Seminar”, which in turn was based on the paper P. Salani, A characterization of balls through optimal concavity for potential functions, Proc. AMS 143 (1) (2015), 173-183.","PeriodicalId":41199,"journal":{"name":"Bruno Pini Mathematical Analysis Seminar","volume":"8 1","pages":"26-42"},"PeriodicalIF":0.2000,"publicationDate":"2018-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bruno Pini Mathematical Analysis Seminar","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6092/ISSN.2240-2829/7795","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this note I give a short overview about convexity properties of solutions to elliptic equations in convex domains and convex rings and show a result about the optimal concavity of the Newtonian potential of a bounded convex domain in ℝ n , n ≥ 3, namely: if the Newtonian potential of a bounded domain is ”sufficiently concave”, then the domain is necessarily a ball. This result can be considered an unconventional overdetermined problem. This paper is based on a talk given by the author in Bologna at the ”Bruno Pini Mathematical Analysis Seminar”, which in turn was based on the paper P. Salani, A characterization of balls through optimal concavity for potential functions, Proc. AMS 143 (1) (2015), 173-183.
牛顿势的最优凹性
在这篇文章中,我简要地概述了凸域和凸环中椭圆方程解的凸性,并给出了在凸环中有界凸域的牛顿势的最优凹性的一个结果ℝ n,n≥3,即:如果有界域的牛顿势“充分凹”,则该域必然是球。这个结果可以被认为是一个非常规的超定问题。本文基于作者在博洛尼亚“Bruno Pini数学分析研讨会”上的一次演讲,该研讨会又基于P.Salani的论文《通过势函数的最佳凹性对球的表征》,Proc。AMS 143(1)(2015),173-183。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.30
自引率
0.00%
发文量
0
审稿时长
15 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信