{"title":"Bilingual Text Classification in English and Indonesian via Transfer Learning using XLM-RoBERTa","authors":"Yakobus Wiciaputra, J. Young, A. Rusli","doi":"10.15849/ijasca.211128.06","DOIUrl":null,"url":null,"abstract":"With the large amount of text information circulating on the internet, there is a need of a solution that can help processing data in the form of text for various purposes. In Indonesia, text information circulating on the internet generally uses 2 languages, English and Indonesian. This research focuses in building a model that is able to classify text in more than one language, or also commonly known as multilingual text classification. The multilingual text classification will use the XLM-RoBERTa model in its implementation. This study applied the transfer learning concept used by XLM-RoBERTa to build a classification model for texts in Indonesian using only the English News Dataset as a training dataset with Matthew Correlation Coefficient value of 42.2%. The results of this study also have the highest accuracy value when tested on a large English News Dataset (37,886) with Matthew Correlation Coefficient value of 90.8%, accuracy of 93.3%, precision of 93.4%, recall of 93.3%, and F1 of 93.3% and the accuracy value when tested on a large Indonesian News Dataset (70,304) with Matthew Correlation Coefficient value of 86.4%, accuracy, precision, recall, and F1 values of 90.2% using the large size Mixed News Dataset (108,190) in the model training process. Keywords: Multilingual Text Classification, Natural Language Processing, News Dataset, Transfer Learning, XLM-RoBERTa","PeriodicalId":38638,"journal":{"name":"International Journal of Advances in Soft Computing and its Applications","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advances in Soft Computing and its Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15849/ijasca.211128.06","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 1
Abstract
With the large amount of text information circulating on the internet, there is a need of a solution that can help processing data in the form of text for various purposes. In Indonesia, text information circulating on the internet generally uses 2 languages, English and Indonesian. This research focuses in building a model that is able to classify text in more than one language, or also commonly known as multilingual text classification. The multilingual text classification will use the XLM-RoBERTa model in its implementation. This study applied the transfer learning concept used by XLM-RoBERTa to build a classification model for texts in Indonesian using only the English News Dataset as a training dataset with Matthew Correlation Coefficient value of 42.2%. The results of this study also have the highest accuracy value when tested on a large English News Dataset (37,886) with Matthew Correlation Coefficient value of 90.8%, accuracy of 93.3%, precision of 93.4%, recall of 93.3%, and F1 of 93.3% and the accuracy value when tested on a large Indonesian News Dataset (70,304) with Matthew Correlation Coefficient value of 86.4%, accuracy, precision, recall, and F1 values of 90.2% using the large size Mixed News Dataset (108,190) in the model training process. Keywords: Multilingual Text Classification, Natural Language Processing, News Dataset, Transfer Learning, XLM-RoBERTa
期刊介绍:
The aim of this journal is to provide a lively forum for the communication of original research papers and timely review articles on Advances in Soft Computing and Its Applications. IJASCA will publish only articles of the highest quality. Submissions will be evaluated on their originality and significance. IJASCA invites submissions in all areas of Soft Computing and Its Applications. The scope of the journal includes, but is not limited to: √ Soft Computing Fundamental and Optimization √ Soft Computing for Big Data Era √ GPU Computing for Machine Learning √ Soft Computing Modeling for Perception and Spiritual Intelligence √ Soft Computing and Agents Technology √ Soft Computing in Computer Graphics √ Soft Computing and Pattern Recognition √ Soft Computing in Biomimetic Pattern Recognition √ Data mining for Social Network Data √ Spatial Data Mining & Information Retrieval √ Intelligent Software Agent Systems and Architectures √ Advanced Soft Computing and Multi-Objective Evolutionary Computation √ Perception-Based Intelligent Decision Systems √ Spiritual-Based Intelligent Systems √ Soft Computing in Industry ApplicationsOther issues related to the Advances of Soft Computing in various applications.