Semiparametric Trend Analysis for Stratified Recurrent Gap Times Under Weak Comparability Constraint.

Pub Date : 2023-07-01 Epub Date: 2023-06-03 DOI:10.1007/s12561-023-09376-8
Peng Liu, Yijian Huang, Kwun Chuen Gary Chan, Ying Qing Chen
{"title":"Semiparametric Trend Analysis for Stratified Recurrent Gap Times Under Weak Comparability Constraint.","authors":"Peng Liu, Yijian Huang, Kwun Chuen Gary Chan, Ying Qing Chen","doi":"10.1007/s12561-023-09376-8","DOIUrl":null,"url":null,"abstract":"<p><p>Recurrent event data are frequently encountered in many longitudinal studies where each individual may experience more than one event. Wang and Chen (Biometrics 56(3):789-794, 2000) proposed a comparability constraint to estimate the time trend for the gap times, where the gap time pairs that satisfy the constraint have the same conditional distribution. However, the comparable paired gap times are also independent. Therefore, the comparable gap time pairs will be subject to a stronger constraint than needed for the estimation. Thus their procedure is subject to information loss. Under the accelerated failure time model, we propose a new comparability constraint that can overcome the drawback mentioned above. The gap time pairs being selected by the proposed comparability constraint will still have the same distribution, but they do not need to be independent of each other. We showed that the proposed comparability constraint will utilize more gap time data pairs than the strong comparability. And we showed via various simulation studies that the variance will be smaller than Wang and Chen's (2000) estimator. We apply the proposed method to the HIV Prevention Trial Network 052 study.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11542620/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12561-023-09376-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/6/3 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Recurrent event data are frequently encountered in many longitudinal studies where each individual may experience more than one event. Wang and Chen (Biometrics 56(3):789-794, 2000) proposed a comparability constraint to estimate the time trend for the gap times, where the gap time pairs that satisfy the constraint have the same conditional distribution. However, the comparable paired gap times are also independent. Therefore, the comparable gap time pairs will be subject to a stronger constraint than needed for the estimation. Thus their procedure is subject to information loss. Under the accelerated failure time model, we propose a new comparability constraint that can overcome the drawback mentioned above. The gap time pairs being selected by the proposed comparability constraint will still have the same distribution, but they do not need to be independent of each other. We showed that the proposed comparability constraint will utilize more gap time data pairs than the strong comparability. And we showed via various simulation studies that the variance will be smaller than Wang and Chen's (2000) estimator. We apply the proposed method to the HIV Prevention Trial Network 052 study.

分享
查看原文
弱可比性约束下分层循环间隙时间的半参数趋势分析
在许多纵向研究中经常会遇到重复事件数据,每个人可能会经历不止一次事件。Wang 和 Chen(Biometrics 56(3):789-794,2000 年)提出了一个可比性约束来估计间隙时间的时间趋势,满足该约束的间隙时间对具有相同的条件分布。然而,可比较的成对间隙时间也是独立的。因此,可比间隙时间对受到的约束将比估计所需的约束更强。因此,他们的程序会造成信息损失。在加速故障时间模型下,我们提出了一种新的可比性约束,可以克服上述缺点。根据所提出的可比性约束所选择的间隙时间对仍然具有相同的分布,但它们不需要相互独立。我们证明,与强可比性相比,建议的可比性约束将利用更多的间隙时间数据对。我们还通过各种模拟研究表明,方差将小于 Wang 和 Chen(2000 年)的估计方法。我们将提出的方法应用于艾滋病预防试验网络 052 研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信