Existence of The Asymptotically Periodic Solution to the System of Nonlinear Neutral Difference Equations

Q4 Mathematics
E. Schmeidel, M. Zdanowicz
{"title":"Existence of The Asymptotically Periodic Solution to the System of Nonlinear Neutral Difference Equations","authors":"E. Schmeidel, M. Zdanowicz","doi":"10.2478/tmmp-2021-0025","DOIUrl":null,"url":null,"abstract":"Abstract The system of nonlinear neutral difference equations with delays in the form { Δ(yi(n)+pi(n)yi(n−τi))=ai(n)fi(yi+1(n))+gi(n),Δ(ym(n)+pm(n)ym(n−τm))=am(n)fm(y1(n))+gm(n),\\[\\left\\{ \\begin{array}{l} \\Delta ({y_i}(n) + {p_i}(n){y_i}(n - {\\tau _i})) = {a_i}(n){f_i}({y_{i + 1}}(n)) + {g_i}(n),\\\\ \\Delta ({y_m}(n) + {p_m}(n){y_m}(n - {\\tau _m})) = {a_m}(n){f_m}({y_1}(n)) + {g_m}(n), \\end{array} \\right.\\] for i = 1, . . . , m − 1, m ≥ 2, is studied. The sufficient conditions for the existence of an asymptotically periodic solution of the above system, are established. Here sequences (pi(n)), i = 1,..., m, are bounded away from -1. The presented results are illustrated by theoretical and numerical examples.","PeriodicalId":38690,"journal":{"name":"Tatra Mountains Mathematical Publications","volume":"79 1","pages":"149 - 162"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tatra Mountains Mathematical Publications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/tmmp-2021-0025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract The system of nonlinear neutral difference equations with delays in the form { Δ(yi(n)+pi(n)yi(n−τi))=ai(n)fi(yi+1(n))+gi(n),Δ(ym(n)+pm(n)ym(n−τm))=am(n)fm(y1(n))+gm(n),\[\left\{ \begin{array}{l} \Delta ({y_i}(n) + {p_i}(n){y_i}(n - {\tau _i})) = {a_i}(n){f_i}({y_{i + 1}}(n)) + {g_i}(n),\\ \Delta ({y_m}(n) + {p_m}(n){y_m}(n - {\tau _m})) = {a_m}(n){f_m}({y_1}(n)) + {g_m}(n), \end{array} \right.\] for i = 1, . . . , m − 1, m ≥ 2, is studied. The sufficient conditions for the existence of an asymptotically periodic solution of the above system, are established. Here sequences (pi(n)), i = 1,..., m, are bounded away from -1. The presented results are illustrated by theoretical and numerical examples.
一类非线性中立型差分方程组渐近周期解的存在性
摘要具有时滞的非线性中立型差分方程组,其形式为:Δ(yi(n)+pi(n)yi(nτi))=ai(n)fi(yi+1(n))+gi(n),Δ(ym(n)+pm(n)ym(nτm))=am(n)fm(y1(n f_i}({y_{i+1}}(n))+{g_i}(n),\\\\Delta({_m})={a_m}{array}\right。\]对于i=1,m−1,m≥2。建立了上述系统渐近周期解存在的充分条件。这里的序列(pi(n)),i=1,。。。,m、 以远离-1为界。通过理论和数值算例对所得结果进行了说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Tatra Mountains Mathematical Publications
Tatra Mountains Mathematical Publications Mathematics-Mathematics (all)
CiteScore
1.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信