Swirler geometry effects (dh/do ratio) on synthetic gas flames: Part 1: Combustion and emission characteristics

Q3 Earth and Planetary Sciences
Harun Yilmaz, Omer Cam, I. Yilmaz
{"title":"Swirler geometry effects (dh/do ratio) on synthetic gas flames: Part 1: Combustion and emission characteristics","authors":"Harun Yilmaz, Omer Cam, I. Yilmaz","doi":"10.6001/energetika.v67i1.4535","DOIUrl":null,"url":null,"abstract":"Swirling flows increase combustion performance via favouring flame stability, pollutant emissions, and combustion intensity. The strength of a swirling flow is characterized by a parameter known as swirl number, which is highly related to the dh/do ratio. In this study, effects of the swirler dh/do ratio on combustion and emission characteristics of the synthetic gas flames of premixed 20%CNG/30%H2/30%CO/20%CO2 mixture were experimentally investigated in a laboratory-scale swirl stabilized combustor. For this purpose, twelve different swirl generators were designed and manufactured. dh/do ratios of these swirlers were set as 0.30 and 0.50, and the geometric swirl number was varied between the values of 0.4 and 1.4 (at 0.2 intervals). All experiments were conducted at a fuel-lean equivalence ratio (ϕ = 0.6), room temperature, and local atmospheric conditions of the city of Kayseri, Turkey. A data logger was utilized to plot axial and radial temperatures and NOx, CO, and CO2 profiles, which were exploited to assess combustion and emission performance. Results showed that the dh/do ratio had a non-monotonic effect on the behaviour of combustion and emission of the tested synthetic gas mixture. Depending on the swirl number, increments and decrements were observed in temperature and emission values.","PeriodicalId":35639,"journal":{"name":"Energetika","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energetika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6001/energetika.v67i1.4535","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

Swirling flows increase combustion performance via favouring flame stability, pollutant emissions, and combustion intensity. The strength of a swirling flow is characterized by a parameter known as swirl number, which is highly related to the dh/do ratio. In this study, effects of the swirler dh/do ratio on combustion and emission characteristics of the synthetic gas flames of premixed 20%CNG/30%H2/30%CO/20%CO2 mixture were experimentally investigated in a laboratory-scale swirl stabilized combustor. For this purpose, twelve different swirl generators were designed and manufactured. dh/do ratios of these swirlers were set as 0.30 and 0.50, and the geometric swirl number was varied between the values of 0.4 and 1.4 (at 0.2 intervals). All experiments were conducted at a fuel-lean equivalence ratio (ϕ = 0.6), room temperature, and local atmospheric conditions of the city of Kayseri, Turkey. A data logger was utilized to plot axial and radial temperatures and NOx, CO, and CO2 profiles, which were exploited to assess combustion and emission performance. Results showed that the dh/do ratio had a non-monotonic effect on the behaviour of combustion and emission of the tested synthetic gas mixture. Depending on the swirl number, increments and decrements were observed in temperature and emission values.
合成气体火焰的旋流器几何效应(dh/do比):第1部分:燃烧和排放特性
旋流通过有利于火焰稳定性、污染物排放和燃烧强度来提高燃烧性能。旋流强度的特征是一个参数称为旋流数,这是高度相关的dh/do比。在实验室规模的旋流稳定燃烧室中,实验研究了旋流器dh/do比对20%CNG/30%H2/30%CO/20%CO2预混混合物燃烧和排放特性的影响。为此,设计并制造了12种不同的涡流发生器。旋流器的Dh /do比值分别为0.30和0.50,几何旋流数在0.4和1.4之间(间隔为0.2)变化。所有实验均在燃料稀薄等效比(φ = 0.6)、室温和土耳其开塞利市的当地大气条件下进行。数据记录仪用于绘制轴向和径向温度以及NOx、CO和CO2分布曲线,用于评估燃烧和排放性能。结果表明,水合比对合成气体的燃烧和排放行为有非单调影响。根据旋涡数,在温度和排放值中观察到增加和减少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Energetika
Energetika Energy-Energy Engineering and Power Technology
CiteScore
2.10
自引率
0.00%
发文量
0
期刊介绍: The journal publishes original scientific, review and problem papers in the following fields: power engineering economics, modelling of energy systems, their management and optimi­zation, target systems, environmental impacts of power engi­neering objects, nuclear energetics, its safety, radioactive waste disposal, renewable power sources, power engineering metro­logy, thermal physics, aerohydrodynamics, plasma technologies, combustion processes, hydrogen energetics, material studies and technologies, hydrology, hydroenergetics. All papers are re­viewed. Information is presented on the defended theses, vari­ous conferences, reviews, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信