Coarse decomposition of II1 factors

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
S. Popa
{"title":"Coarse decomposition of II1 factors","authors":"S. Popa","doi":"10.1215/00127094-2021-0059","DOIUrl":null,"url":null,"abstract":"We prove that any separable II1 factor M admits a coarse decomposition over the hyperfinite II1 factor R—that is, there exists an embedding R↪M such that L2M⊖L2R is a multiple of the coarse Hilbert R-bimodule L2R⊗‾L2Rop. Equivalently, the von Neumann algebra generated by left and right multiplication by R on L2M⊖L2R is isomorphic to R⊗‾Rop. Moreover, if Q⊂M is an infinite-index irreducible subfactor, then R↪M can be constructed to be coarse with respect to Q as well. This implies the existence of maximal abelian ∗-subalgebras that are mixing, strongly malnormal, and with infinite multiplicity, in any given separable II1 factor.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1215/00127094-2021-0059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 6

Abstract

We prove that any separable II1 factor M admits a coarse decomposition over the hyperfinite II1 factor R—that is, there exists an embedding R↪M such that L2M⊖L2R is a multiple of the coarse Hilbert R-bimodule L2R⊗‾L2Rop. Equivalently, the von Neumann algebra generated by left and right multiplication by R on L2M⊖L2R is isomorphic to R⊗‾Rop. Moreover, if Q⊂M is an infinite-index irreducible subfactor, then R↪M can be constructed to be coarse with respect to Q as well. This implies the existence of maximal abelian ∗-subalgebras that are mixing, strongly malnormal, and with infinite multiplicity, in any given separable II1 factor.
II1因子的粗略分解
我们证明了任何可分离的II1因子M都允许在超有限II1因子R上进行粗分解——也就是说,存在嵌入R↪使得L2M⊖L2R是粗糙希尔伯特R-双模L2R⊗‾L2 Rop的倍数。等价地,由L2M⊖L2R上R的左乘和右乘生成的von Neumann代数同构于R⊗‾Rop。此外,如果Q⊂M是一个无限索引的不可约子因子,那么R↪M也可以被构造为相对于Q是粗糙的。这意味着在任何给定的可分离II1因子中,存在混合的、强非正规的、具有无限多重性的极大阿贝尔*-子代数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信