Systems biology approaches to interpreting genomic data

IF 4.6
Twan van den Beucken
{"title":"Systems biology approaches to interpreting genomic data","authors":"Twan van den Beucken","doi":"10.1016/j.cotox.2019.02.004","DOIUrl":null,"url":null,"abstract":"<div><p><span>Technological developments in genome-wide analysis have accelerated the generation of large, complex data sets characterizing human biology at the molecular level. Integration of data from different molecular levels holds great promise for gaining understanding of complex biological systems. Toxicogenomics aims to obtain a comprehensive mechanistic map of </span>cellular processes that drive adverse outcomes. Such an integrated approach relies on combining various genome-wide profiles (DNA, RNA, protein, and metabolite) and linking these to functional endpoints to allow the identification of relevant biological pathways. Here, current strategies for generating multiomic data within the domain of toxicogenomics are highlighted, and current strategies for multiomic data integration are discussed.</p></div>","PeriodicalId":93968,"journal":{"name":"Current opinion in toxicology","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.cotox.2019.02.004","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in toxicology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468202019300026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Technological developments in genome-wide analysis have accelerated the generation of large, complex data sets characterizing human biology at the molecular level. Integration of data from different molecular levels holds great promise for gaining understanding of complex biological systems. Toxicogenomics aims to obtain a comprehensive mechanistic map of cellular processes that drive adverse outcomes. Such an integrated approach relies on combining various genome-wide profiles (DNA, RNA, protein, and metabolite) and linking these to functional endpoints to allow the identification of relevant biological pathways. Here, current strategies for generating multiomic data within the domain of toxicogenomics are highlighted, and current strategies for multiomic data integration are discussed.

解释基因组数据的系统生物学方法
全基因组分析的技术发展加速了在分子水平上表征人类生物学的大型、复杂数据集的产生。整合来自不同分子水平的数据对于理解复杂的生物系统大有希望。毒物基因组学旨在获得驱动不良结果的细胞过程的综合机制图。这种综合方法依赖于结合各种全基因组图谱(DNA、RNA、蛋白质和代谢物),并将它们与功能端点连接起来,从而识别相关的生物学途径。在这里,毒物基因组学领域内生成多组数据的当前策略被强调,并讨论了多组数据集成的当前策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Current opinion in toxicology
Current opinion in toxicology Toxicology, Biochemistry
CiteScore
8.50
自引率
0.00%
发文量
0
审稿时长
64 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信