Big data and deep data in scanning and electron microscopies: deriving functionality from multidimensional data sets

IF 3.56 Q1 Medicine
Alex Belianinov, Rama Vasudevan, Evgheni Strelcov, Chad Steed, Sang Mo Yang, Alexander Tselev, Stephen Jesse, Michael Biegalski, Galen Shipman, Christopher Symons, Albina Borisevich, Rick Archibald, Sergei Kalinin
{"title":"Big data and deep data in scanning and electron microscopies: deriving functionality from multidimensional data sets","authors":"Alex Belianinov,&nbsp;Rama Vasudevan,&nbsp;Evgheni Strelcov,&nbsp;Chad Steed,&nbsp;Sang Mo Yang,&nbsp;Alexander Tselev,&nbsp;Stephen Jesse,&nbsp;Michael Biegalski,&nbsp;Galen Shipman,&nbsp;Christopher Symons,&nbsp;Albina Borisevich,&nbsp;Rick Archibald,&nbsp;Sergei Kalinin","doi":"10.1186/s40679-015-0006-6","DOIUrl":null,"url":null,"abstract":"<p>The development of electron and scanning probe microscopies in the second half of the twentieth century has produced spectacular images of the internal structure and composition of matter with nanometer, molecular, and atomic resolution. Largely, this progress was enabled by computer-assisted methods of microscope operation, data acquisition, and analysis. Advances in imaging technology in the beginning of the twenty-first century have opened the proverbial floodgates on the availability of high-veracity information on structure and functionality. From the hardware perspective, high-resolution imaging methods now routinely resolve atomic positions with approximately picometer precision, allowing for quantitative measurements of individual bond lengths and angles. Similarly, functional imaging often leads to multidimensional data sets containing partial or full information on properties of interest, acquired as a function of multiple parameters (time, temperature, or other external stimuli). Here, we review several recent applications of the big and deep data analysis methods to visualize, compress, and translate this multidimensional structural and functional data into physically and chemically relevant information.</p>","PeriodicalId":460,"journal":{"name":"Advanced Structural and Chemical Imaging","volume":"1 1","pages":""},"PeriodicalIF":3.5600,"publicationDate":"2015-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s40679-015-0006-6","citationCount":"92","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Structural and Chemical Imaging","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s40679-015-0006-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 92

Abstract

The development of electron and scanning probe microscopies in the second half of the twentieth century has produced spectacular images of the internal structure and composition of matter with nanometer, molecular, and atomic resolution. Largely, this progress was enabled by computer-assisted methods of microscope operation, data acquisition, and analysis. Advances in imaging technology in the beginning of the twenty-first century have opened the proverbial floodgates on the availability of high-veracity information on structure and functionality. From the hardware perspective, high-resolution imaging methods now routinely resolve atomic positions with approximately picometer precision, allowing for quantitative measurements of individual bond lengths and angles. Similarly, functional imaging often leads to multidimensional data sets containing partial or full information on properties of interest, acquired as a function of multiple parameters (time, temperature, or other external stimuli). Here, we review several recent applications of the big and deep data analysis methods to visualize, compress, and translate this multidimensional structural and functional data into physically and chemically relevant information.

Abstract Image

扫描和电子显微镜中的大数据和深度数据:从多维数据集派生功能
二十世纪下半叶电子探针显微镜和扫描探针显微镜的发展,产生了具有纳米、分子和原子分辨率的物质内部结构和组成的壮观图像。在很大程度上,这一进步是由计算机辅助的显微镜操作、数据采集和分析方法实现的。21世纪初成像技术的进步打开了关于结构和功能的高准确性信息的可用性的闸门。从硬件的角度来看,高分辨率成像方法现在通常以大约皮米的精度解析原子位置,允许定量测量单个键的长度和角度。类似地,功能成像通常会导致多维数据集,其中包含有关感兴趣属性的部分或全部信息,这些信息是作为多个参数(时间、温度或其他外部刺激)的函数获得的。在这里,我们回顾了最近一些大数据和深度数据分析方法的应用,这些方法将这些多维结构和功能数据可视化、压缩并转化为物理和化学相关信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Structural and Chemical Imaging
Advanced Structural and Chemical Imaging Medicine-Radiology, Nuclear Medicine and Imaging
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信