Dominik Bertsche, Ralf Brüggemann, Christian Kascha
{"title":"Directed graphs and variable selection in large vector autoregressive models","authors":"Dominik Bertsche, Ralf Brüggemann, Christian Kascha","doi":"10.1111/jtsa.12664","DOIUrl":null,"url":null,"abstract":"<p>We represent the dynamic relation among variables in vector autoregressive (VAR) models as directed graphs. Based on these graphs, we identify so-called strongly connected components. Using this graphical representation, we consider the problem of variable choice. We use the relations among the strongly connected components to select variables that need to be included in a VAR if interest is in impulse response analysis of a given set of variables. Our theoretical contributions show that the set of selected variables from the graphical method coincides with the set of variables that is multi-step causal for the variables of interest by relating the paths in the graph to the coefficients of the ‘direct’ VAR representation. An empirical application illustrates the usefulness of the suggested approach: Including the selected variables into a small US monetary VAR is useful for impulse response analysis as it avoids the well-known ‘price-puzzle’.</p>","PeriodicalId":49973,"journal":{"name":"Journal of Time Series Analysis","volume":"44 2","pages":"223-246"},"PeriodicalIF":1.2000,"publicationDate":"2022-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jtsa.12664","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Time Series Analysis","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jtsa.12664","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
We represent the dynamic relation among variables in vector autoregressive (VAR) models as directed graphs. Based on these graphs, we identify so-called strongly connected components. Using this graphical representation, we consider the problem of variable choice. We use the relations among the strongly connected components to select variables that need to be included in a VAR if interest is in impulse response analysis of a given set of variables. Our theoretical contributions show that the set of selected variables from the graphical method coincides with the set of variables that is multi-step causal for the variables of interest by relating the paths in the graph to the coefficients of the ‘direct’ VAR representation. An empirical application illustrates the usefulness of the suggested approach: Including the selected variables into a small US monetary VAR is useful for impulse response analysis as it avoids the well-known ‘price-puzzle’.
期刊介绍:
During the last 30 years Time Series Analysis has become one of the most important and widely used branches of Mathematical Statistics. Its fields of application range from neurophysiology to astrophysics and it covers such well-known areas as economic forecasting, study of biological data, control systems, signal processing and communications and vibrations engineering.
The Journal of Time Series Analysis started in 1980, has since become the leading journal in its field, publishing papers on both fundamental theory and applications, as well as review papers dealing with recent advances in major areas of the subject and short communications on theoretical developments. The editorial board consists of many of the world''s leading experts in Time Series Analysis.