Single-channel speech enhancement using Graph Fourier Transform

Chenhui Zhang, Xiang Pan
{"title":"Single-channel speech enhancement using Graph Fourier Transform","authors":"Chenhui Zhang, Xiang Pan","doi":"10.21437/interspeech.2022-740","DOIUrl":null,"url":null,"abstract":"This paper presents combination of Graph Fourier Transform (GFT) and U-net, proposes a deep neural network (DNN) named G-Unet for single channel speech enhancement. GFT is carried out over speech data for creating inputs of U-net. The GFT outputs are combined with the mask estimated by Unet in time-graph (T-G) domain to reconstruct enhanced speech in time domain by Inverse GFT. The G-Unet outperforms the combination of Short time Fourier Transform (STFT) and magnitude estimation U-net in improving speech quality and de-reverberation, and outperforms the combination of STFT and complex U-net in improving speech quality in some cases, which is validated by testing on LibriSpeech and NOISEX92 dataset.","PeriodicalId":73500,"journal":{"name":"Interspeech","volume":"1 1","pages":"946-950"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interspeech","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21437/interspeech.2022-740","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents combination of Graph Fourier Transform (GFT) and U-net, proposes a deep neural network (DNN) named G-Unet for single channel speech enhancement. GFT is carried out over speech data for creating inputs of U-net. The GFT outputs are combined with the mask estimated by Unet in time-graph (T-G) domain to reconstruct enhanced speech in time domain by Inverse GFT. The G-Unet outperforms the combination of Short time Fourier Transform (STFT) and magnitude estimation U-net in improving speech quality and de-reverberation, and outperforms the combination of STFT and complex U-net in improving speech quality in some cases, which is validated by testing on LibriSpeech and NOISEX92 dataset.
使用图傅里叶变换的单通道语音增强
结合图傅里叶变换(GFT)和U-net,提出了一种用于单通道语音增强的深度神经网络(DNN) G-Unet。对语音数据进行GFT,以创建U-net的输入。将GFT输出与Unet在时间图(T-G)域估计的掩码相结合,利用逆GFT在时域内重建增强语音。G-Unet在改善语音质量和去混响方面优于短时傅里叶变换(STFT)和幅度估计组合的U-net,在某些情况下在改善语音质量方面优于STFT和复杂U-net组合,并通过在librisspeech和NOISEX92数据集上的测试验证了这一点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信