Thomas J. Samojedny, Claudia Garnica-Díaz, Dena L. Grossenbacher, G. Adamidis, P. Dimitrakopoulos, S. Siebert, M. Spasojevic, C. Hulshof, N. Rajakaruna
{"title":"Specific leaf area is lower on ultramafic than on neighbouring non-ultramafic soils","authors":"Thomas J. Samojedny, Claudia Garnica-Díaz, Dena L. Grossenbacher, G. Adamidis, P. Dimitrakopoulos, S. Siebert, M. Spasojevic, C. Hulshof, N. Rajakaruna","doi":"10.1080/17550874.2022.2160673","DOIUrl":null,"url":null,"abstract":"ABSTRACT Background Specific leaf area (SLA) is a core trait within the leaf economic spectrum that describes differences in plant performance and productivity. Research on the sources of variation in the leaf economic spectrum and SLA has primarily focused on climate. Much less is known about SLA variation across unusual edaphic environments, such as on ultramafic soils. Aims To determine the role of ultramafic soils as a driver of SLA variation. Methods We measured SLA for dominant species on paired ultramafic and non-ultramafic soils in five biogeographically distinct regions around the globe and compared mean SLA values to globally reported values. Results SLA was lower on ultramafic than on non-ultramafic soils in all regions, except Puerto Rico, and both climate and soil were important drivers of SLA. For three of the five regions, SLA values on ultramafic soils were lower than the global average. Conclusions Soils can be a major driver of SLA along with climate. Low SLA on ultramafic soil points to selection for stress resistance strategies. Furthermore, in some bioregions, SLA values on ultramafic soils were among the lowest on the planet and thus represent globally rare phenotypes that should be conserved within these unique edaphic habitats.","PeriodicalId":49691,"journal":{"name":"Plant Ecology & Diversity","volume":"15 1","pages":"243 - 252"},"PeriodicalIF":1.7000,"publicationDate":"2022-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Ecology & Diversity","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/17550874.2022.2160673","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 3
Abstract
ABSTRACT Background Specific leaf area (SLA) is a core trait within the leaf economic spectrum that describes differences in plant performance and productivity. Research on the sources of variation in the leaf economic spectrum and SLA has primarily focused on climate. Much less is known about SLA variation across unusual edaphic environments, such as on ultramafic soils. Aims To determine the role of ultramafic soils as a driver of SLA variation. Methods We measured SLA for dominant species on paired ultramafic and non-ultramafic soils in five biogeographically distinct regions around the globe and compared mean SLA values to globally reported values. Results SLA was lower on ultramafic than on non-ultramafic soils in all regions, except Puerto Rico, and both climate and soil were important drivers of SLA. For three of the five regions, SLA values on ultramafic soils were lower than the global average. Conclusions Soils can be a major driver of SLA along with climate. Low SLA on ultramafic soil points to selection for stress resistance strategies. Furthermore, in some bioregions, SLA values on ultramafic soils were among the lowest on the planet and thus represent globally rare phenotypes that should be conserved within these unique edaphic habitats.
期刊介绍:
Plant Ecology and Diversity is an international journal for communicating results and novel ideas in plant science, in print and on-line, six times a year. All areas of plant biology relating to ecology, evolution and diversity are of interest, including those which explicitly deal with today''s highly topical themes, such as biodiversity, conservation and global change. We consider submissions that address fundamental questions which are pertinent to contemporary plant science. Articles concerning extreme environments world-wide are particularly welcome.
Plant Ecology and Diversity considers for publication original research articles, short communications, reviews, and scientific correspondence that explore thought-provoking ideas.
To aid redressing ‘publication bias’ the journal is unique in reporting, in the form of short communications, ‘negative results’ and ‘repeat experiments’ that test ecological theories experimentally, in theoretically flawless and methodologically sound papers. Research reviews and method papers, are also encouraged.
Plant Ecology & Diversity publishes high-quality and topical research that demonstrates solid scholarship. As such, the journal does not publish purely descriptive papers. Submissions are required to focus on research topics that are broad in their scope and thus provide new insights and contribute to theory. The original research should address clear hypotheses that test theory or questions and offer new insights on topics of interest to an international readership.