A General Mixture Model for Cognitive Diagnosis

IF 1.9 3区 心理学 Q2 EDUCATION & EDUCATIONAL RESEARCH
Joemari Olea, Kevin Carl P. Santos
{"title":"A General Mixture Model for Cognitive Diagnosis","authors":"Joemari Olea, Kevin Carl P. Santos","doi":"10.3102/10769986231176012","DOIUrl":null,"url":null,"abstract":"Although the generalized deterministic inputs, noisy “and” gate model (G-DINA; de la Torre, 2011) is a general cognitive diagnosis model (CDM), it does not account for the heterogeneity that is rooted from the existing latent groups in the population of examinees. To address this, this study proposes the mixture G-DINA model, a CDM that incorporates the G-DINA model within the finite mixture modeling framework. An expectation–maximization algorithm is developed to estimate the mixture G-DINA model. To determine the viability of the proposed model, an extensive simulation study is conducted to examine the parameter recovery performance, model fit, and correct classification rates. Responses to a reading comprehension assessment were analyzed to further demonstrate the capability of the proposed model.","PeriodicalId":48001,"journal":{"name":"Journal of Educational and Behavioral Statistics","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Educational and Behavioral Statistics","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.3102/10769986231176012","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
引用次数: 0

Abstract

Although the generalized deterministic inputs, noisy “and” gate model (G-DINA; de la Torre, 2011) is a general cognitive diagnosis model (CDM), it does not account for the heterogeneity that is rooted from the existing latent groups in the population of examinees. To address this, this study proposes the mixture G-DINA model, a CDM that incorporates the G-DINA model within the finite mixture modeling framework. An expectation–maximization algorithm is developed to estimate the mixture G-DINA model. To determine the viability of the proposed model, an extensive simulation study is conducted to examine the parameter recovery performance, model fit, and correct classification rates. Responses to a reading comprehension assessment were analyzed to further demonstrate the capability of the proposed model.
认知诊断的一般混合模型
虽然广义确定性输入,噪声“和”门模型(G-DINA;de la Torre, 2011)是一种通用认知诊断模型(CDM),它没有考虑到考生群体中现有潜在群体的异质性。为了解决这个问题,本研究提出了混合G-DINA模型,这是一种将G-DINA模型纳入有限混合建模框架的清洁发展模型。提出了一种期望最大化算法来估计混合G-DINA模型。为了确定所提出模型的可行性,进行了广泛的模拟研究,以检查参数恢复性能,模型拟合和正确分类率。对阅读理解评估的反应进行了分析,以进一步证明所提出模型的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.40
自引率
4.20%
发文量
21
期刊介绍: Journal of Educational and Behavioral Statistics, sponsored jointly by the American Educational Research Association and the American Statistical Association, publishes articles that are original and provide methods that are useful to those studying problems and issues in educational or behavioral research. Typical papers introduce new methods of analysis. Critical reviews of current practice, tutorial presentations of less well known methods, and novel applications of already-known methods are also of interest. Papers discussing statistical techniques without specific educational or behavioral interest or focusing on substantive results without developing new statistical methods or models or making novel use of existing methods have lower priority. Simulation studies, either to demonstrate properties of an existing method or to compare several existing methods (without providing a new method), also have low priority. The Journal of Educational and Behavioral Statistics provides an outlet for papers that are original and provide methods that are useful to those studying problems and issues in educational or behavioral research. Typical papers introduce new methods of analysis, provide properties of these methods, and an example of use in education or behavioral research. Critical reviews of current practice, tutorial presentations of less well known methods, and novel applications of already-known methods are also sometimes accepted. Papers discussing statistical techniques without specific educational or behavioral interest or focusing on substantive results without developing new statistical methods or models or making novel use of existing methods have lower priority. Simulation studies, either to demonstrate properties of an existing method or to compare several existing methods (without providing a new method), also have low priority.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信