Automorphisms of the generalized Thompson's group Tn,r$T_{n,r}$

IF 1.1 Q1 MATHEMATICS
F. Olukoya
{"title":"Automorphisms of the generalized Thompson's group Tn,r$T_{n,r}$","authors":"F. Olukoya","doi":"10.1112/tlm3.12044","DOIUrl":null,"url":null,"abstract":"The recent paper The further chameleon groups of Richard Thompson and Graham Higman: automorphisms via dynamics for the Higman groups Gn,r$G_{n,r}$ of Bleak, Cameron, Maissel, Navas and Olukoya (BCMNO) characterizes the automorphisms of the Higman–Thompson groups Gn,r$G_{n,r}$ . This characterization is as the specific subgroup of the rational group Rn,r$\\mathcal {R}_{n,r}$ of Grigorchuk, Nekrashevych and Suchanskiĭ consisting of elements which have the additional property of being bi‐synchronizing. This article extends the arguments of BCMNO to characterize the automorphism group of Tn,r$T_{n,r}$ as a subgroup of Aut(Gn,r)$\\mathop {\\mathrm{Aut}}({G_{n,r}})$ . We naturally also study the outer automorphism groups Out(Tn,r)$\\mathop {\\mathrm{Out}}({T_{n,r}})$ . We show that each group Out(Tn,r)$\\mathop {\\mathrm{Out}}({T_{n,r}})$ can be realized a subgroup of the group Out(Tn,n−1)$\\mathop {\\mathrm{Out}}({T_{n,n-1}})$ . Extending results of Brin and Guzman, we also show that the groups Out(Tn,r)$\\mathop {\\mathrm{Out}}({T_{n,r}})$ , for n>2$n\\,{>}\\,2$ , are all infinite and contain an isomorphic copy of Thompson's group F$F$ . Our techniques for studying the groups Out(Tn,r)$\\mathop {\\mathrm{Out}}({T_{n,r}})$ work equally well for Out(Gn,r)$\\mathop {\\mathrm{Out}}({G_{n,r}})$ and we are able to prove some results for both families of groups. In particular, for X∈{T,G}$X \\in \\lbrace T,G\\rbrace$ , we show that the groups Out(Xn,r)$\\mathop {\\mathrm{Out}}({X_{n,r}})$ fit in a lattice structure where Out(Xn,1)⊴Out(Xn,r)$\\mathop {\\mathrm{Out}}({X_{n,1}}) \\unlhd \\mathop {\\mathrm{Out}}({X_{n,r}})$ for all 1⩽r⩽n−1$1 \\leqslant r \\leqslant n-1$ and Out(Xn,r)⊴Out(Xn,n−1)$\\mathop {\\mathrm{Out}}({X_{n,r}}) \\unlhd \\mathop {\\mathrm{Out}}({X_{n,n-1}})$ . This gives a partial answer to a question in BCMNO concerning the normal subgroup structure of Out(Gn,n−1)$\\mathop {\\mathrm{Out}}({G_{n,n-1}})$ . Furthermore, we deduce that for 1⩽j,d⩽n−1$1\\leqslant j,d \\leqslant n-1$ such that d=gcd(j,n−1)$d = \\gcd (j, n-1)$ , Out(Xn,j)=Out(Xn,d)$\\mathop {\\mathrm{Out}}({X_{n,j}}) = \\mathop {\\mathrm{Out}}({X_{n,d}})$ extending a result of BCMNO for the groups Gn,r$G_{n,r}$ to the groups Tn,r$T_{n,r}$ . We give a negative answer to the question in BCMNO which asks whether Out(Gn,r)≅Out(Gn,s)$\\mathop {\\mathrm{Out}}({G_{n,r}}) \\cong \\mathop {\\mathrm{Out}}({G_{n,s}})$ if and only if gcd(n−1,r)=gcd(n−1,s)$\\gcd (n-1,r) = \\gcd (n-1,s)$ . Lastly, we show that the groups Tn,r$T_{n,r}$ have the R∞$R_{\\infty }$ property. This extends a result of Burillo, Matucci and Ventura and, independently, Gonçalves and Sankaran, for Thompson's group T$T$ .","PeriodicalId":41208,"journal":{"name":"Transactions of the London Mathematical Society","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2022-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the London Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1112/tlm3.12044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

The recent paper The further chameleon groups of Richard Thompson and Graham Higman: automorphisms via dynamics for the Higman groups Gn,r$G_{n,r}$ of Bleak, Cameron, Maissel, Navas and Olukoya (BCMNO) characterizes the automorphisms of the Higman–Thompson groups Gn,r$G_{n,r}$ . This characterization is as the specific subgroup of the rational group Rn,r$\mathcal {R}_{n,r}$ of Grigorchuk, Nekrashevych and Suchanskiĭ consisting of elements which have the additional property of being bi‐synchronizing. This article extends the arguments of BCMNO to characterize the automorphism group of Tn,r$T_{n,r}$ as a subgroup of Aut(Gn,r)$\mathop {\mathrm{Aut}}({G_{n,r}})$ . We naturally also study the outer automorphism groups Out(Tn,r)$\mathop {\mathrm{Out}}({T_{n,r}})$ . We show that each group Out(Tn,r)$\mathop {\mathrm{Out}}({T_{n,r}})$ can be realized a subgroup of the group Out(Tn,n−1)$\mathop {\mathrm{Out}}({T_{n,n-1}})$ . Extending results of Brin and Guzman, we also show that the groups Out(Tn,r)$\mathop {\mathrm{Out}}({T_{n,r}})$ , for n>2$n\,{>}\,2$ , are all infinite and contain an isomorphic copy of Thompson's group F$F$ . Our techniques for studying the groups Out(Tn,r)$\mathop {\mathrm{Out}}({T_{n,r}})$ work equally well for Out(Gn,r)$\mathop {\mathrm{Out}}({G_{n,r}})$ and we are able to prove some results for both families of groups. In particular, for X∈{T,G}$X \in \lbrace T,G\rbrace$ , we show that the groups Out(Xn,r)$\mathop {\mathrm{Out}}({X_{n,r}})$ fit in a lattice structure where Out(Xn,1)⊴Out(Xn,r)$\mathop {\mathrm{Out}}({X_{n,1}}) \unlhd \mathop {\mathrm{Out}}({X_{n,r}})$ for all 1⩽r⩽n−1$1 \leqslant r \leqslant n-1$ and Out(Xn,r)⊴Out(Xn,n−1)$\mathop {\mathrm{Out}}({X_{n,r}}) \unlhd \mathop {\mathrm{Out}}({X_{n,n-1}})$ . This gives a partial answer to a question in BCMNO concerning the normal subgroup structure of Out(Gn,n−1)$\mathop {\mathrm{Out}}({G_{n,n-1}})$ . Furthermore, we deduce that for 1⩽j,d⩽n−1$1\leqslant j,d \leqslant n-1$ such that d=gcd(j,n−1)$d = \gcd (j, n-1)$ , Out(Xn,j)=Out(Xn,d)$\mathop {\mathrm{Out}}({X_{n,j}}) = \mathop {\mathrm{Out}}({X_{n,d}})$ extending a result of BCMNO for the groups Gn,r$G_{n,r}$ to the groups Tn,r$T_{n,r}$ . We give a negative answer to the question in BCMNO which asks whether Out(Gn,r)≅Out(Gn,s)$\mathop {\mathrm{Out}}({G_{n,r}}) \cong \mathop {\mathrm{Out}}({G_{n,s}})$ if and only if gcd(n−1,r)=gcd(n−1,s)$\gcd (n-1,r) = \gcd (n-1,s)$ . Lastly, we show that the groups Tn,r$T_{n,r}$ have the R∞$R_{\infty }$ property. This extends a result of Burillo, Matucci and Ventura and, independently, Gonçalves and Sankaran, for Thompson's group T$T$ .
广义Thompson群Tn,r$T_{n,r}的自同构$
最近的论文《Richard Thompson和Graham Higman的进一步变色龙群:基于动力学的Higman群Gn,r $G_{n,r}$》(BCMNO)描述了Higman - Thompson群Gn,r $G_{n,r}$的自同构。这种表征是Grigorchuk, Nekrashevych和suchanski的理性群Rn,r $\mathcal {R}_{n,r}$的特定子群,由具有双同步特性的元素组成。本文扩展了BCMNO的论点,将Tn,r $T_{n,r}$的自同构群刻画为Aut(Gn,r) $\mathop {\mathrm{Aut}}({G_{n,r}})$的子群。我们自然也研究了外自同构群Out(Tn,r) $\mathop {\mathrm{Out}}({T_{n,r}})$。我们证明了每个组Out(Tn,r) $\mathop {\mathrm{Out}}({T_{n,r}})$都可以实现组Out(Tn,n−1)$\mathop {\mathrm{Out}}({T_{n,n-1}})$的一个子组。推广Brin和Guzman的结果,我们还证明了群Out(Tn,r) $\mathop {\mathrm{Out}}({T_{n,r}})$,对于n>2 $n\,{>}\,2$,都是无限的,并且包含Thompson群F $F$的同构副本。我们研究Out(Tn,r) $\mathop {\mathrm{Out}}({T_{n,r}})$组的技术同样适用于Out(Gn,r) $\mathop {\mathrm{Out}}({G_{n,r}})$,并且我们能够证明两个组的一些结果。特别地,对于X∈{T,G}$X \in \lbrace T,G\rbrace$,我们证明了群Out(Xn,r) $\mathop {\mathrm{Out}}({X_{n,r}})$适合于一个晶格结构,其中Out(Xn,1)⊴Out(Xn,r) $\mathop {\mathrm{Out}}({X_{n,1}}) \unlhd \mathop {\mathrm{Out}}({X_{n,r}})$对于所有1≤r≤n−1 $1 \leqslant r \leqslant n-1$和Out(Xn,r)⊴Out(Xn,n−1)$\mathop {\mathrm{Out}}({X_{n,r}}) \unlhd \mathop {\mathrm{Out}}({X_{n,n-1}})$。这部分回答了BCMNO中关于Out(Gn,n−1)$\mathop {\mathrm{Out}}({G_{n,n-1}})$正子群结构的问题。进一步,我们推导出对于1≤j,d≤n−1 $1\leqslant j,d \leqslant n-1$,使得d=gcd(j,n−1)$d = \gcd (j, n-1)$, Out(Xn,j)=Out(Xn,d) $\mathop {\mathrm{Out}}({X_{n,j}}) = \mathop {\mathrm{Out}}({X_{n,d}})$,将群Gn,r $G_{n,r}$的BCMNO结果推广到群Tn,r $T_{n,r}$。对于BCMNO中Out(Gn,r) = Out(Gn,s) $\mathop {\mathrm{Out}}({G_{n,r}}) \cong \mathop {\mathrm{Out}}({G_{n,s}})$当且仅当gcd(n−1,r)=gcd(n−1,s) $\gcd (n-1,r) = \gcd (n-1,s)$的问题,我们给出了一个否定的答案。最后,我们证明了群Tn,r $T_{n,r}$具有r∞$R_{\infty }$的性质。这扩展了Burillo, Matucci和Ventura的结果,以及独立的gonalves和Sankaran对Thompson的T组$T$的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
8
审稿时长
41 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信