A combination of tides and nontidal variations in ocean bottom pressure may generate interannual slip fluctuations in the transition zone along a subduction plate interface
{"title":"A combination of tides and nontidal variations in ocean bottom pressure may generate interannual slip fluctuations in the transition zone along a subduction plate interface","authors":"Yoshiyuki Tanaka , Hiromu Sakaue , Masayuki Kano , Suguru Yabe","doi":"10.1016/j.geog.2022.09.001","DOIUrl":null,"url":null,"abstract":"<div><p>The tidal triggering of earthquakes has been studied for many years. The discovery of slow earthquakes in the early 2000s, including slow slip, has urged scientists to investigate the tidal responses of these earthquakes due to their sensitivity to weak stress perturbations. Previous studies have shown that slow earthquakes correlate with diurnal and semidiurnal tides and seasonal variations in surface loads more clearly than ordinary earthquakes. However, little is known about long-term responses to external stresses. In this paper, based on a widely accepted frictional law for faults, a mechanism is proposed by which nontidal variations in ocean bottom pressure, when combined with tides, promote the occurrence of slow earthquakes. Because slow earthquakes accompany a slip on the plate interface, this mechanism allows one to estimate slip modulations. A one-degree-of-freedom slip model is constructed and applied to Ise Bay in the Tonankai region of southwestern Japan, where large-scale ocean mass redistributions have occurred. The model calculated with parameters determined from the observation of tectonic tremors is quantitatively consistent with the slip during 1997–2013 inferred from GNSS data, suggesting that the decrease in the sea-level change in approximately 2006 could cause the acceleration of a slip observed after that. This result implies that the decreases in sea level in approximately 1996 and 2014 could also cause subsequent slip accelerations. These three slip acceleration periods temporally coincide with the increases in background seismicity in a shallower portion of the plate interface. These changes in seismicity are common to shallow earthquakes in the Tokai area, and a similar model can reproduce them. Further studies are expected to reveal causality between shallow earthquakes and long-term slip fluctuations based on modeling that considers changes in the frictional property along the plate interface.</p></div>","PeriodicalId":46398,"journal":{"name":"Geodesy and Geodynamics","volume":"14 1","pages":"Pages 43-51"},"PeriodicalIF":2.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geodesy and Geodynamics","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674984722000866","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 3
Abstract
The tidal triggering of earthquakes has been studied for many years. The discovery of slow earthquakes in the early 2000s, including slow slip, has urged scientists to investigate the tidal responses of these earthquakes due to their sensitivity to weak stress perturbations. Previous studies have shown that slow earthquakes correlate with diurnal and semidiurnal tides and seasonal variations in surface loads more clearly than ordinary earthquakes. However, little is known about long-term responses to external stresses. In this paper, based on a widely accepted frictional law for faults, a mechanism is proposed by which nontidal variations in ocean bottom pressure, when combined with tides, promote the occurrence of slow earthquakes. Because slow earthquakes accompany a slip on the plate interface, this mechanism allows one to estimate slip modulations. A one-degree-of-freedom slip model is constructed and applied to Ise Bay in the Tonankai region of southwestern Japan, where large-scale ocean mass redistributions have occurred. The model calculated with parameters determined from the observation of tectonic tremors is quantitatively consistent with the slip during 1997–2013 inferred from GNSS data, suggesting that the decrease in the sea-level change in approximately 2006 could cause the acceleration of a slip observed after that. This result implies that the decreases in sea level in approximately 1996 and 2014 could also cause subsequent slip accelerations. These three slip acceleration periods temporally coincide with the increases in background seismicity in a shallower portion of the plate interface. These changes in seismicity are common to shallow earthquakes in the Tokai area, and a similar model can reproduce them. Further studies are expected to reveal causality between shallow earthquakes and long-term slip fluctuations based on modeling that considers changes in the frictional property along the plate interface.
期刊介绍:
Geodesy and Geodynamics launched in October, 2010, and is a bimonthly publication. It is sponsored jointly by Institute of Seismology, China Earthquake Administration, Science Press, and another six agencies. It is an international journal with a Chinese heart. Geodesy and Geodynamics is committed to the publication of quality scientific papers in English in the fields of geodesy and geodynamics from authors around the world. Its aim is to promote a combination between Geodesy and Geodynamics, deepen the application of Geodesy in the field of Geoscience and quicken worldwide fellows'' understanding on scientific research activity in China. It mainly publishes newest research achievements in the field of Geodesy, Geodynamics, Science of Disaster and so on. Aims and Scope: new theories and methods of geodesy; new results of monitoring and studying crustal movement and deformation by using geodetic theories and methods; new ways and achievements in earthquake-prediction investigation by using geodetic theories and methods; new results of crustal movement and deformation studies by using other geologic, hydrological, and geophysical theories and methods; new results of satellite gravity measurements; new development and results of space-to-ground observation technology.