Fabrication of N-Doped Carbon Quantum Dots/BiOI Nanocomposite and Its Efficient Photocatalytic Activity Under Visible-Light Irradiation

IF 0.8 Q4 MATERIALS SCIENCE, BIOMATERIALS
Yichang Yu, Ziyuyang Zheng, Wei Liao, Y. Yao, F. Peng, Tingting Chen, J. Wu, Li Feng
{"title":"Fabrication of N-Doped Carbon Quantum Dots/BiOI Nanocomposite and Its Efficient Photocatalytic Activity Under Visible-Light Irradiation","authors":"Yichang Yu, Ziyuyang Zheng, Wei Liao, Y. Yao, F. Peng, Tingting Chen, J. Wu, Li Feng","doi":"10.1142/s1793984421500033","DOIUrl":null,"url":null,"abstract":"A novel spherical N-CQDs/BiOI photocatalyst was successfully synthesized through a facile solvothermal method. The optimization experiments of hydrothermal time and temperature were carried out. The effect of ammonium citrate addition was investigated. The as-synthesized photocatalysts were characterized via X-ray diffraction, scanning and transmission electron microscopy, Fourier transform infrared spectrum and elemental analysis. The adsorption and photocatalytic performance of as-synthesized photocatalysts were studied, 0.2N-CQDs/BiOI showed the best performance. For the removal of anionic dye RhB, adsorption occupied a major position. The maximum adsorption capacity was 97.09[Formula: see text]mg/g for RhB. For the removal of cationic dyes X3B, photocatalysis occupied a major position. The photocatalytic activity of 0.2N-CQDs/BiOI was superior to that of nano-TiO2 under the simulate sunlight irradiation. Different scavengers were used to analyze the effect of active species and photocatalytic degradation mechanism of X3B. The outstanding stability and performance make 0.2N-CQDs/BiOI has highly potential applications in wastewater treatment.","PeriodicalId":44929,"journal":{"name":"Nano Life","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2021-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Life","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s1793984421500033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 1

Abstract

A novel spherical N-CQDs/BiOI photocatalyst was successfully synthesized through a facile solvothermal method. The optimization experiments of hydrothermal time and temperature were carried out. The effect of ammonium citrate addition was investigated. The as-synthesized photocatalysts were characterized via X-ray diffraction, scanning and transmission electron microscopy, Fourier transform infrared spectrum and elemental analysis. The adsorption and photocatalytic performance of as-synthesized photocatalysts were studied, 0.2N-CQDs/BiOI showed the best performance. For the removal of anionic dye RhB, adsorption occupied a major position. The maximum adsorption capacity was 97.09[Formula: see text]mg/g for RhB. For the removal of cationic dyes X3B, photocatalysis occupied a major position. The photocatalytic activity of 0.2N-CQDs/BiOI was superior to that of nano-TiO2 under the simulate sunlight irradiation. Different scavengers were used to analyze the effect of active species and photocatalytic degradation mechanism of X3B. The outstanding stability and performance make 0.2N-CQDs/BiOI has highly potential applications in wastewater treatment.
n掺杂碳量子点/BiOI纳米复合材料的制备及其可见光下的高效光催化活性
采用简单的溶剂热法成功合成了一种新型球形N-CQDs/BiOI光催化剂。进行了水热时间和温度的优化实验。考察了柠檬酸铵的加入对合成效果的影响。通过x射线衍射、扫描电镜和透射电镜、傅里叶变换红外光谱和元素分析对合成的光催化剂进行了表征。研究了所合成光催化剂的吸附和光催化性能,以0.2N-CQDs/BiOI为最佳。对于阴离子染料RhB的去除,吸附法占有主要地位。RhB的最大吸附量为97.09 mg/g[公式:见文]。对于阳离子染料X3B的去除,光催化占据了主要地位。在模拟日光照射下,0.2N-CQDs/BiOI的光催化活性优于纳米tio2。采用不同的清除剂对X3B的光催化降解机理进行了分析。优异的稳定性和性能使0.2N-CQDs/BiOI在废水处理中具有很大的应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nano Life
Nano Life MATERIALS SCIENCE, BIOMATERIALS-
CiteScore
0.70
自引率
12.50%
发文量
14
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信