Zircon U–Pb geochronology and geochemistry of the Late Jurassic granite porphyries from central-eastern Jilin Province, NE China: Petrogenesis and tectonic implications
{"title":"Zircon U–Pb geochronology and geochemistry of the Late Jurassic granite porphyries from central-eastern Jilin Province, NE China: Petrogenesis and tectonic implications","authors":"Xiqing Ye, Zhitao Xu, Mengmeng Li, Liying Sun, Zhongwei Li, Donghan Yan, Jingqiao Feng","doi":"10.1111/iar.12464","DOIUrl":null,"url":null,"abstract":"<p>The recently discovered Yizuoying Mo deposit is located in central-eastern Jilin Province, NE China. The molybdenum (Mo) mineralization, mainly hosted in granite porphyry, is considered to be granite-related. Zircon U–Pb dating of the granite porphyry yielded concordant ages of 160.81 ± 0.62 Ma, which is consistent with the weighted mean U–Pb age of 160.53 ± 0.65 Ma, indicating that the emplacement of granitic plutons occurred in the Late Jurassic. The granite porphyry samples are peraluminous, high-K calc-alkaline and show an A-type geochemical signature with high Na<sub>2</sub>O + K<sub>2</sub>O and Zr + Nb + Ce + Y content, K<sub>2</sub>O/MgO, Fe<sub>2</sub>O<sub>3</sub><sup>T</sup>/(Fe<sub>2</sub>O<sub>3</sub><sup>T</sup> + MgO), REEs (rare earth elements) and 10 000 Ga/Al ratios. Based on the trace element content of zircons, they have high Th, U, Zr, Hf, and Pb abundance and obvious La and Eu anomalies, and their distribution pattern is similar to that of A-type granites. The zircon εHf(<i>t</i>) values range from 4.5 to 10.5 with Neoproterozoic <i>T</i><sub>DM2</sub> ages (536–922 Ma) for Hf isotopes, and they have relatively high values of εNd(<i>t</i>) (3.14 to 3.49; <i>T</i><sub>DM2</sub> = 665–693 Ma) and initial <sup>87</sup>Sr/<sup>86</sup>Sr (0.723260–0.734669). Detailed elemental and isotopic data suggest that the Yizuoying granite porphyry belongs to the A<sub>2</sub>-subtype and was formed by partial melting of a crustal source with a neoproterozoic overall residence age. Integrating new data on the oxygen fugacity of zircons and published data on the tectonic evolution, we suggest that the granite porphyry and associated Mo mineralization in the Yizuoying deposit formed in an extensional environment at ~160 Ma, related to the subduction of the Paleo-Pacific plate. The evolution of granitic magma in this period contributed to Mo mineralization.</p>","PeriodicalId":14791,"journal":{"name":"Island Arc","volume":"31 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Island Arc","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/iar.12464","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The recently discovered Yizuoying Mo deposit is located in central-eastern Jilin Province, NE China. The molybdenum (Mo) mineralization, mainly hosted in granite porphyry, is considered to be granite-related. Zircon U–Pb dating of the granite porphyry yielded concordant ages of 160.81 ± 0.62 Ma, which is consistent with the weighted mean U–Pb age of 160.53 ± 0.65 Ma, indicating that the emplacement of granitic plutons occurred in the Late Jurassic. The granite porphyry samples are peraluminous, high-K calc-alkaline and show an A-type geochemical signature with high Na2O + K2O and Zr + Nb + Ce + Y content, K2O/MgO, Fe2O3T/(Fe2O3T + MgO), REEs (rare earth elements) and 10 000 Ga/Al ratios. Based on the trace element content of zircons, they have high Th, U, Zr, Hf, and Pb abundance and obvious La and Eu anomalies, and their distribution pattern is similar to that of A-type granites. The zircon εHf(t) values range from 4.5 to 10.5 with Neoproterozoic TDM2 ages (536–922 Ma) for Hf isotopes, and they have relatively high values of εNd(t) (3.14 to 3.49; TDM2 = 665–693 Ma) and initial 87Sr/86Sr (0.723260–0.734669). Detailed elemental and isotopic data suggest that the Yizuoying granite porphyry belongs to the A2-subtype and was formed by partial melting of a crustal source with a neoproterozoic overall residence age. Integrating new data on the oxygen fugacity of zircons and published data on the tectonic evolution, we suggest that the granite porphyry and associated Mo mineralization in the Yizuoying deposit formed in an extensional environment at ~160 Ma, related to the subduction of the Paleo-Pacific plate. The evolution of granitic magma in this period contributed to Mo mineralization.
期刊介绍:
Island Arc is the official journal of the Geological Society of Japan. This journal focuses on the structure, dynamics and evolution of convergent plate boundaries, including trenches, volcanic arcs, subducting plates, and both accretionary and collisional orogens in modern and ancient settings. The Journal also opens to other key geological processes and features of broad interest such as oceanic basins, mid-ocean ridges, hot spots, continental cratons, and their surfaces and roots. Papers that discuss the interaction between solid earth, atmosphere, and bodies of water are also welcome. Articles of immediate importance to other researchers, either by virtue of their new data, results or ideas are given priority publication.
Island Arc publishes peer-reviewed articles and reviews. Original scientific articles, of a maximum length of 15 printed pages, are published promptly with a standard publication time from submission of 3 months. All articles are peer reviewed by at least two research experts in the field of the submitted paper.