BOUNDARY VALUES OF ANALYTIC FUNCTIONS

A. G. Ramm
{"title":"BOUNDARY VALUES OF ANALYTIC FUNCTIONS","authors":"A. G. Ramm","doi":"10.17654/0972096023011","DOIUrl":null,"url":null,"abstract":"Let $D$ be a connected bounded domain in $\\R^2$, $S$ be its boundary which is closed, connected and smooth. Let $\\Phi(z)=\\frac 1 {2\\pi i}\\int_S\\frac{f(s)ds}{s-z}$, $f\\in L^1(S)$, $z=x+iy$. Boundary values of $\\Phi(z)$ on $S$ are studied. The function $\\Phi(t)$, $t\\in S$, is defined in a new way. Necessary and sufficient conditions are given for $f\\in L^1(S)$ to be boundary value of an analytic in $D$ function. The Sokhotsky-Plemelj formulas are derived for $f\\in L^1(S)$.","PeriodicalId":89368,"journal":{"name":"Far east journal of applied mathematics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Far east journal of applied mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17654/0972096023011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Let $D$ be a connected bounded domain in $\R^2$, $S$ be its boundary which is closed, connected and smooth. Let $\Phi(z)=\frac 1 {2\pi i}\int_S\frac{f(s)ds}{s-z}$, $f\in L^1(S)$, $z=x+iy$. Boundary values of $\Phi(z)$ on $S$ are studied. The function $\Phi(t)$, $t\in S$, is defined in a new way. Necessary and sufficient conditions are given for $f\in L^1(S)$ to be boundary value of an analytic in $D$ function. The Sokhotsky-Plemelj formulas are derived for $f\in L^1(S)$.
解析函数的边值
设$D$是$\R^2$中的连通有界域,$S$是其闭、连通、光滑的边界。设$\Phi(z)=\frac 1{2\pi i}\int_S\frac{f(S)ds}{S-z}$,$f\in L^1(S)$,$z=x+iy$。研究了$\S$上$\Phi(z)$的边值。S$中的函数$\Phi(t)$,$t\以一种新的方式定义。给出了L^1(S)$中的$f\为$D$函数中分析的边值的充要条件。Sokhotsky-Plemelj公式是为L^1(S)$中的$f\导出的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信