Estimate for the first fourth Steklov eigenvalue of a minimal hypersurface with free boundary

Pub Date : 2023-09-03 DOI:10.2140/pjm.2023.325.1
Rondinelle Batista, Barnab'e Lima, Paulo Sousa, Bruno Vieira
{"title":"Estimate for the first fourth Steklov eigenvalue of a minimal hypersurface with free boundary","authors":"Rondinelle Batista, Barnab'e Lima, Paulo Sousa, Bruno Vieira","doi":"10.2140/pjm.2023.325.1","DOIUrl":null,"url":null,"abstract":". We explore the fourth-order Steklov problem of a compact embedded hyper-surface (cid:54) n with free boundary in a ( n + 1 ) -dimensional compact manifold M n + 1 which has nonnegative Ricci curvature and strictly convex boundary. If (cid:54) is minimal we establish a lower bound for the first eigenvalue of this problem. When M = B n + 1 is the unit ball in (cid:82) n + 1 , if (cid:54) has constant mean curvature H (cid:54) we prove that the first eigenvalue satisfies σ 1 ≤ n + | H (cid:54) | . In the minimal case ( H (cid:54) = 0), we prove that σ 1 = n .","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/pjm.2023.325.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

. We explore the fourth-order Steklov problem of a compact embedded hyper-surface (cid:54) n with free boundary in a ( n + 1 ) -dimensional compact manifold M n + 1 which has nonnegative Ricci curvature and strictly convex boundary. If (cid:54) is minimal we establish a lower bound for the first eigenvalue of this problem. When M = B n + 1 is the unit ball in (cid:82) n + 1 , if (cid:54) has constant mean curvature H (cid:54) we prove that the first eigenvalue satisfies σ 1 ≤ n + | H (cid:54) | . In the minimal case ( H (cid:54) = 0), we prove that σ 1 = n .
分享
查看原文
具有自由边界的极小超曲面的第一个四阶Steklov特征值的估计
研究了具有非负Ricci曲率和严格凸边界的(n+1)维紧致流形Mn+1中具有自由边界的紧致嵌入超曲面(cid:54)n的四阶Steklov问题。如果(cid:54)是极小的,我们建立了这个问题的第一特征值的下界。当M=Bn+1是(cid:82)n+1中的单位球时,如果(cid:54)具有恒定的平均曲率H(cid:54),我们证明了第一特征值满足σ1≤n+|H(cid:54)|。在极小情况(H(cid:54)=0)下,我们证明了σ1=n。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信