{"title":"DFT estimation of structural parameters and band gaps of III–V (GaP, AlP, InP, BP) and II–VI (BeX, MgX, CdX: X\\(=\\)O, S, Se, Te) semiconductors","authors":"Sandeep Arora, Dharamvir Singh Ahlawat, Dharmbir Singh","doi":"10.1007/s12043-023-02577-2","DOIUrl":null,"url":null,"abstract":"<div><p>In density functional theory (DFT)-based computational methods, electronic properties at optimised atomic position and lattice constants are calculated for semiconducting materials belonging to III–V (GaP, AlP, InP, BP) and II–VI (BeX, MgX, CdX: X =O, S, Se, Te) groups. This paper reports the calculation of equilibrium lattice constants and bulk moduli of the materials under study using five different DFT functionals LDA, PBE, WC, PBEsol and SCAN. The results show that LDA underestimates while PBE overestimates the experimental lattice constants for all these semiconducting materials studied with a mean absolute relative error (%) of the order of 1%. Such trends in LDA and PBE results agree with the earlier reported work. The lattice constants calculated using WC, PBEsol and SCAN are in better agreement with the experiment compared to optB88vdW functional reported by others. On an average, WC and PBEsol functional have been found to be better in estimating the lattice constants and bulk modulus of II–VI binary compounds. We also present the band-gap calculations of the materials under study using different exchange-correlation functionals. The modified Becke–Johnson approximation suggested by Tran and Blaha is found to provide a better agreement with the experimentally reported results than the standard DFT method.</p></div>","PeriodicalId":743,"journal":{"name":"Pramana","volume":"97 3","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pramana","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s12043-023-02577-2","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In density functional theory (DFT)-based computational methods, electronic properties at optimised atomic position and lattice constants are calculated for semiconducting materials belonging to III–V (GaP, AlP, InP, BP) and II–VI (BeX, MgX, CdX: X =O, S, Se, Te) groups. This paper reports the calculation of equilibrium lattice constants and bulk moduli of the materials under study using five different DFT functionals LDA, PBE, WC, PBEsol and SCAN. The results show that LDA underestimates while PBE overestimates the experimental lattice constants for all these semiconducting materials studied with a mean absolute relative error (%) of the order of 1%. Such trends in LDA and PBE results agree with the earlier reported work. The lattice constants calculated using WC, PBEsol and SCAN are in better agreement with the experiment compared to optB88vdW functional reported by others. On an average, WC and PBEsol functional have been found to be better in estimating the lattice constants and bulk modulus of II–VI binary compounds. We also present the band-gap calculations of the materials under study using different exchange-correlation functionals. The modified Becke–Johnson approximation suggested by Tran and Blaha is found to provide a better agreement with the experimentally reported results than the standard DFT method.
期刊介绍:
Pramana - Journal of Physics is a monthly research journal in English published by the Indian Academy of Sciences in collaboration with Indian National Science Academy and Indian Physics Association. The journal publishes refereed papers covering current research in Physics, both original contributions - research papers, brief reports or rapid communications - and invited reviews. Pramana also publishes special issues devoted to advances in specific areas of Physics and proceedings of select high quality conferences.