Cohesion and aggregates in unsaturated wet granular flows down a rough incline

IF 3 2区 工程技术 Q2 MECHANICS
S. Deboeuf, A. Fall
{"title":"Cohesion and aggregates in unsaturated wet granular flows down a rough incline","authors":"S. Deboeuf, A. Fall","doi":"10.1122/8.0000631","DOIUrl":null,"url":null,"abstract":"Multi-phase flows, encountered in nature or in industry, exhibit non-trivial rheological properties, which we attempt to better understand thanks to model materials and appropriate rheometers. Unsaturated wet granular flows down a rough inclined plane turn out to be steady and uniform for a wide range of parameters, despite the cohesion and the grain aggregates. The cohesive Mohr–Coulomb yield criterion extended to inertial granular flows, with a cohesion stress dependent on the liquid content and an internal friction coefficient dependent on the inertial number, allows for predictions in good agreement with our experimental measurements, when one introduces a grain aggregate size, which defines the appropriate length and relaxation time scales in the inertial number. We found that the grain aggregate size depends not monotonically on the liquid content and does not scale with the cohesion length induced by the cohesion stress, due to the non-trivial distribution of the liquid within the granular material.","PeriodicalId":16991,"journal":{"name":"Journal of Rheology","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2023-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Rheology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1122/8.0000631","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 1

Abstract

Multi-phase flows, encountered in nature or in industry, exhibit non-trivial rheological properties, which we attempt to better understand thanks to model materials and appropriate rheometers. Unsaturated wet granular flows down a rough inclined plane turn out to be steady and uniform for a wide range of parameters, despite the cohesion and the grain aggregates. The cohesive Mohr–Coulomb yield criterion extended to inertial granular flows, with a cohesion stress dependent on the liquid content and an internal friction coefficient dependent on the inertial number, allows for predictions in good agreement with our experimental measurements, when one introduces a grain aggregate size, which defines the appropriate length and relaxation time scales in the inertial number. We found that the grain aggregate size depends not monotonically on the liquid content and does not scale with the cohesion length induced by the cohesion stress, due to the non-trivial distribution of the liquid within the granular material.
非饱和湿颗粒流沿粗斜面流动时的内聚力和团聚体
在自然界或工业中遇到的多相流表现出重要的流变特性,我们试图通过模型材料和适当的流变仪更好地理解这些特性。在较宽的参数范围内,非饱和湿颗粒流在粗糙的斜面上是稳定和均匀的,尽管存在粘聚和颗粒聚集。黏合莫尔-库仑屈服准则扩展到惯性颗粒流,黏合应力依赖于液体含量,内摩擦系数依赖于惯性数,当引入颗粒聚集尺寸时,它定义了惯性数中适当的长度和松弛时间尺度,从而允许预测与我们的实验测量结果很好地一致。我们发现,由于液体在颗粒材料内部的非平凡分布,颗粒的粒径不是单调地依赖于液体含量,也不是与黏聚应力引起的黏聚长度成比例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Rheology
Journal of Rheology 物理-力学
CiteScore
6.60
自引率
12.10%
发文量
100
审稿时长
1 months
期刊介绍: The Journal of Rheology, formerly the Transactions of The Society of Rheology, is published six times per year by The Society of Rheology, a member society of the American Institute of Physics, through AIP Publishing. It provides in-depth interdisciplinary coverage of theoretical and experimental issues drawn from industry and academia. The Journal of Rheology is published for professionals and students in chemistry, physics, engineering, material science, and mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信