Geometric models of twisted differential K-theory I

IF 0.5 4区 数学
Byungdo Park
{"title":"Geometric models of twisted differential K-theory I","authors":"Byungdo Park","doi":"10.1007/s40062-017-0177-z","DOIUrl":null,"url":null,"abstract":"<p>This is the first in a series of papers constructing geometric models of twisted differential <i>K</i>-theory. In this paper we construct a model of even twisted differential <i>K</i>-theory when the underlying topological twist represents a torsion class. By differential twists we will mean smooth <i>U</i>(1)-gerbes with connection, and we use twisted vector bundles with connection as cocycles. The model we construct satisfies the axioms of Kahle and Valentino, including functoriality, naturality of twists, and the hexagon diagram. This paper confirms a long-standing hypothetical idea that twisted vector bundles with connection define twisted differential <i>K</i>-theory.</p>","PeriodicalId":636,"journal":{"name":"Journal of Homotopy and Related Structures","volume":"13 1","pages":"143 - 167"},"PeriodicalIF":0.5000,"publicationDate":"2017-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40062-017-0177-z","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Homotopy and Related Structures","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40062-017-0177-z","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

This is the first in a series of papers constructing geometric models of twisted differential K-theory. In this paper we construct a model of even twisted differential K-theory when the underlying topological twist represents a torsion class. By differential twists we will mean smooth U(1)-gerbes with connection, and we use twisted vector bundles with connection as cocycles. The model we construct satisfies the axioms of Kahle and Valentino, including functoriality, naturality of twists, and the hexagon diagram. This paper confirms a long-standing hypothetical idea that twisted vector bundles with connection define twisted differential K-theory.

扭曲微分k理论的几何模型I
本文是构建扭曲微分k理论几何模型系列论文中的第一篇。当底层拓扑扭转表示一个扭转类时,我们构造了一个偶扭转微分k理论模型。微分扭转指的是带连接的光滑U(1)-gerbes,我们使用带连接的扭转矢量束作为环。我们构造的模型满足Kahle和Valentino公理,包括函数性、扭转的自然性和六边形图。本文证实了一个长期存在的假设,即带连接的扭曲向量束定义了扭曲微分k理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Homotopy and Related Structures
Journal of Homotopy and Related Structures Mathematics-Geometry and Topology
自引率
0.00%
发文量
0
期刊介绍: Journal of Homotopy and Related Structures (JHRS) is a fully refereed international journal dealing with homotopy and related structures of mathematical and physical sciences. Journal of Homotopy and Related Structures is intended to publish papers on Homotopy in the broad sense and its related areas like Homological and homotopical algebra, K-theory, topology of manifolds, geometric and categorical structures, homology theories, topological groups and algebras, stable homotopy theory, group actions, algebraic varieties, category theory, cobordism theory, controlled topology, noncommutative geometry, motivic cohomology, differential topology, algebraic geometry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信