Renormalized Energy of a Dislocation Loop in a 3D Anisotropic Body

IF 1.8 3区 工程技术 Q2 ENGINEERING, MULTIDISCIPLINARY
Miroslav Šilhavý
{"title":"Renormalized Energy of a Dislocation Loop in a 3D Anisotropic Body","authors":"Miroslav Šilhavý","doi":"10.1007/s10659-023-10017-w","DOIUrl":null,"url":null,"abstract":"<div><p>The paper presents a rigorous analysis of the singularities of elastic fields near a dislocation loop in a body of arbitrary material symmetry that extends over the entire three-space. Explicit asymptotic formulas are given for the stress, strain and the incompatible distortion near the curved dislocation. These formulas are used to analyze the main object of the paper, the renormalized energy. The core-cutoff method is used to introduce that notion: first, a core in the form of a curved tube along the dislocation loop is removed; then, the energy of the complement is determined (= the core-cutoff energy). As in the case of a straight dislocation, the core-cutoff energy has a singularity that is proportional to the logarithm of the core radius. The renormalized energy is the limit, as the radius tends to 0, of the core-cutoff energy minus the singular logarithmic part. The main result of the paper are novel formulas for the coefficient of logarithmic singularity (the ‘prelogarithmic energy factor’) and for the renormalized energy.</p></div>","PeriodicalId":624,"journal":{"name":"Journal of Elasticity","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Elasticity","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10659-023-10017-w","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The paper presents a rigorous analysis of the singularities of elastic fields near a dislocation loop in a body of arbitrary material symmetry that extends over the entire three-space. Explicit asymptotic formulas are given for the stress, strain and the incompatible distortion near the curved dislocation. These formulas are used to analyze the main object of the paper, the renormalized energy. The core-cutoff method is used to introduce that notion: first, a core in the form of a curved tube along the dislocation loop is removed; then, the energy of the complement is determined (= the core-cutoff energy). As in the case of a straight dislocation, the core-cutoff energy has a singularity that is proportional to the logarithm of the core radius. The renormalized energy is the limit, as the radius tends to 0, of the core-cutoff energy minus the singular logarithmic part. The main result of the paper are novel formulas for the coefficient of logarithmic singularity (the ‘prelogarithmic energy factor’) and for the renormalized energy.

三维各向异性体中位错环的重整化能量
本文对任意材料对称体在整个三维空间中的位错环附近的弹性场奇点进行了严密的分析。给出了弯曲位错附近的应力、应变和不相容变形的显式渐近公式。这些公式用于分析本文的主要研究对象重整化能量。采用岩心切断法来引入这一概念:首先,沿位错环去除弯曲管形式的岩心;然后,确定补体的能量(=核截止能量)。在直线位错的情况下,截核能量的奇点与核半径的对数成正比。重归一化能量是当半径趋于0时,核截止能量减去奇异对数部分的极限。本文的主要成果是对数奇异系数(“前对数能量因子”)和重归一化能量的新公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Elasticity
Journal of Elasticity 工程技术-材料科学:综合
CiteScore
3.70
自引率
15.00%
发文量
74
审稿时长
>12 weeks
期刊介绍: The Journal of Elasticity was founded in 1971 by Marvin Stippes (1922-1979), with its main purpose being to report original and significant discoveries in elasticity. The Journal has broadened in scope over the years to include original contributions in the physical and mathematical science of solids. The areas of rational mechanics, mechanics of materials, including theories of soft materials, biomechanics, and engineering sciences that contribute to fundamental advancements in understanding and predicting the complex behavior of solids are particularly welcomed. The role of elasticity in all such behavior is well recognized and reporting significant discoveries in elasticity remains important to the Journal, as is its relation to thermal and mass transport, electromagnetism, and chemical reactions. Fundamental research that applies the concepts of physics and elements of applied mathematical science is of particular interest. Original research contributions will appear as either full research papers or research notes. Well-documented historical essays and reviews also are welcomed. Materials that will prove effective in teaching will appear as classroom notes. Computational and/or experimental investigations that emphasize relationships to the modeling of the novel physical behavior of solids at all scales are of interest. Guidance principles for content are to be found in the current interests of the Editorial Board.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信