On the expected Betti numbers of the nodal set of random fields

IF 1.9 1区 数学 Q1 MATHEMATICS
I. Wigman
{"title":"On the expected Betti numbers of the nodal set of random fields","authors":"I. Wigman","doi":"10.2140/apde.2021.14.1797","DOIUrl":null,"url":null,"abstract":"This note concerns the asymptotics of the expected total Betti numbers of the nodal set for an important class of Gaussian ensembles of random fields on Riemannian manifolds. By working with the limit random field defined on the Euclidean space we were able to obtain a locally precise asymptotic result, though due to the possible positive contribution of large percolating components this does not allow to infer a global result. As a by-product of our analysis, we refine the lower bound of Gayet-Welschinger for the important Kostlan ensemble of random polynomials and its generalisation to K\\\"{a}hler manifolds.","PeriodicalId":49277,"journal":{"name":"Analysis & PDE","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis & PDE","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/apde.2021.14.1797","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 6

Abstract

This note concerns the asymptotics of the expected total Betti numbers of the nodal set for an important class of Gaussian ensembles of random fields on Riemannian manifolds. By working with the limit random field defined on the Euclidean space we were able to obtain a locally precise asymptotic result, though due to the possible positive contribution of large percolating components this does not allow to infer a global result. As a by-product of our analysis, we refine the lower bound of Gayet-Welschinger for the important Kostlan ensemble of random polynomials and its generalisation to K\"{a}hler manifolds.
关于节点随机场集的期望Betti数
本文研究黎曼流形上一类重要的随机场高斯综的节点集的期望总Betti数的渐近性。通过处理欧几里得空间上定义的极限随机场,我们能够获得局部精确的渐近结果,尽管由于可能的大渗透分量的积极贡献,这不允许推断出全局结果。作为我们分析的副产品,我们改进了随机多项式的重要Kostlan集合的Gayet-Welschinger下界及其推广到K\ {a}hler流形。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Analysis & PDE
Analysis & PDE MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
3.80
自引率
0.00%
发文量
38
审稿时长
6 months
期刊介绍: APDE aims to be the leading specialized scholarly publication in mathematical analysis. The full editorial board votes on all articles, accounting for the journal’s exceptionally high standard and ensuring its broad profile.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信