{"title":"On the expected Betti numbers of the nodal set of random fields","authors":"I. Wigman","doi":"10.2140/apde.2021.14.1797","DOIUrl":null,"url":null,"abstract":"This note concerns the asymptotics of the expected total Betti numbers of the nodal set for an important class of Gaussian ensembles of random fields on Riemannian manifolds. By working with the limit random field defined on the Euclidean space we were able to obtain a locally precise asymptotic result, though due to the possible positive contribution of large percolating components this does not allow to infer a global result. As a by-product of our analysis, we refine the lower bound of Gayet-Welschinger for the important Kostlan ensemble of random polynomials and its generalisation to K\\\"{a}hler manifolds.","PeriodicalId":49277,"journal":{"name":"Analysis & PDE","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis & PDE","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/apde.2021.14.1797","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 6
Abstract
This note concerns the asymptotics of the expected total Betti numbers of the nodal set for an important class of Gaussian ensembles of random fields on Riemannian manifolds. By working with the limit random field defined on the Euclidean space we were able to obtain a locally precise asymptotic result, though due to the possible positive contribution of large percolating components this does not allow to infer a global result. As a by-product of our analysis, we refine the lower bound of Gayet-Welschinger for the important Kostlan ensemble of random polynomials and its generalisation to K\"{a}hler manifolds.
期刊介绍:
APDE aims to be the leading specialized scholarly publication in mathematical analysis. The full editorial board votes on all articles, accounting for the journal’s exceptionally high standard and ensuring its broad profile.