Direct Numerical Simulation of real-gas effects within turbulent boundary layers for fully-developed channel flows

IF 1.1 Q4 ENGINEERING, MECHANICAL
Taofei Chen, Bijie Yang, Miles C. Robertson, R. Martinez-Botas
{"title":"Direct Numerical Simulation of real-gas effects within turbulent boundary layers for fully-developed channel flows","authors":"Taofei Chen, Bijie Yang, Miles C. Robertson, R. Martinez-Botas","doi":"10.33737/gpps20-tc-68","DOIUrl":null,"url":null,"abstract":"Real-gas effects have a significant impact on compressible turbulent flows of dense gases, especially when flow properties are in proximity of the saturation line and/or the thermodynamic critical point. Understanding of these effects is key for the analysis and improvement of performance for many industrial components, including expanders and heat exchangers in organic Rankine cycle systems.\n\nThis work analyzes the real-gas effect on the turbulent boundary layer of fully developed channel flow of two organic gases, R1233zd(E) and MDM - two candidate working fluids for ORC systems. Compressible direct numerical simulations (DNS) with real-gas equations of state are used in this research. Three cases are set up for each organic vapour, representing thermodynamic states far from, close to and inside the supercritical region, and these cases refer to weak, normal and strong real-gas effect in each fluid.\n\nThe results within this work show that the real-gas effect can significantly influence the profile of averaged thermodynamic properties, relative to an air baseline case. This effect has a reverse impact on the distribution of averaged temperature and density. As the real-gas effect gets stronger, the averaged centre-to-wall temperature ratio decreases but the density drop increases. In a strong real-gas effect case, the dynamic viscosity at the channel center point can be lower than at channel wall. This phenomenon can not be found in a perfect gas flow.\n\nThe real-gas effect increases the normal Reynolds stress in the wall-normal direction by 7–20% and in the spanwise direction by 10–21%, which is caused by its impact on the viscosity profile. It also increases the Reynolds shear stress by 5–8%. The real-gas effect increases the turbulence kinetic energy dissipation in the viscous sublayer and buffer sublayer <inline-formula><mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\" overflow=\"scroll\"><mml:mo stretchy=\"false\">(</mml:mo><mml:msup><mml:mi>y</mml:mi><mml:mo>∗</mml:mo></mml:msup><mml:mo><</mml:mo><mml:mn>30</mml:mn><mml:mo stretchy=\"false\">)</mml:mo></mml:math></inline-formula> but not in the outer layer. The turbulent viscosity hypthesis is checked in these two fluids, and the result shows that the standard two-function RANS model (<inline-formula><mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\" overflow=\"scroll\"><mml:mi>k</mml:mi><mml:mo>−</mml:mo><mml:mi>ϵ</mml:mi></mml:math></inline-formula> and <inline-formula><mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\" overflow=\"scroll\"><mml:mi>k</mml:mi><mml:mo>−</mml:mo><mml:mi>ω</mml:mi></mml:math></inline-formula>) with a constant <inline-formula><mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\" overflow=\"scroll\"><mml:msub><mml:mi>C</mml:mi><mml:mi>μ</mml:mi></mml:msub><mml:mo>=</mml:mo><mml:mn>0.09</mml:mn></mml:math></inline-formula> is still suitable in the outer layer <inline-formula><mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\" overflow=\"scroll\"><mml:mo stretchy=\"false\">(</mml:mo><mml:msup><mml:mi>y</mml:mi><mml:mo>∗</mml:mo></mml:msup><mml:mo>></mml:mo><mml:mn>70</mml:mn><mml:mo stretchy=\"false\">)</mml:mo></mml:math></inline-formula>, with an error in ±10%.","PeriodicalId":53002,"journal":{"name":"Journal of the Global Power and Propulsion Society","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2020-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Global Power and Propulsion Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33737/gpps20-tc-68","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 5

Abstract

Real-gas effects have a significant impact on compressible turbulent flows of dense gases, especially when flow properties are in proximity of the saturation line and/or the thermodynamic critical point. Understanding of these effects is key for the analysis and improvement of performance for many industrial components, including expanders and heat exchangers in organic Rankine cycle systems. This work analyzes the real-gas effect on the turbulent boundary layer of fully developed channel flow of two organic gases, R1233zd(E) and MDM - two candidate working fluids for ORC systems. Compressible direct numerical simulations (DNS) with real-gas equations of state are used in this research. Three cases are set up for each organic vapour, representing thermodynamic states far from, close to and inside the supercritical region, and these cases refer to weak, normal and strong real-gas effect in each fluid. The results within this work show that the real-gas effect can significantly influence the profile of averaged thermodynamic properties, relative to an air baseline case. This effect has a reverse impact on the distribution of averaged temperature and density. As the real-gas effect gets stronger, the averaged centre-to-wall temperature ratio decreases but the density drop increases. In a strong real-gas effect case, the dynamic viscosity at the channel center point can be lower than at channel wall. This phenomenon can not be found in a perfect gas flow. The real-gas effect increases the normal Reynolds stress in the wall-normal direction by 7–20% and in the spanwise direction by 10–21%, which is caused by its impact on the viscosity profile. It also increases the Reynolds shear stress by 5–8%. The real-gas effect increases the turbulence kinetic energy dissipation in the viscous sublayer and buffer sublayer (y<30) but not in the outer layer. The turbulent viscosity hypthesis is checked in these two fluids, and the result shows that the standard two-function RANS model (kϵ and kω) with a constant Cμ=0.09 is still suitable in the outer layer (y>70), with an error in ±10%.
完全发展的通道流湍流边界层内真实气体效应的直接数值模拟
真实气体效应对致密气体的可压缩湍流具有显著影响,尤其是当流动特性接近饱和线和/或热力学临界点时。了解这些影响是分析和改善许多工业部件性能的关键,包括有机朗肯循环系统中的膨胀机和热交换器。本文分析了两种有机气体R1233zd(E)和MDM(ORC系统的两种候选工作流体)对完全发展的通道流湍流边界层的真实气体效应。本研究使用了具有真实气体状态方程的可压缩直接数值模拟(DNS)。每种有机蒸汽都有三种情况,代表远离、接近和在超临界区内的热力学状态,这些情况指的是每种流体中的弱、正常和强真实气体效应。这项工作的结果表明,相对于空气基线情况,实际气体效应可以显著影响平均热力学性质的分布。这种效应对平均温度和密度的分布有相反的影响。随着实际气体效应的增强,平均中心与壁面的温度比降低,但密度下降增加。在强真实气体效应的情况下,通道中心点处的动态粘度可能低于通道壁处的动态粘性。这种现象在完美的气流中是找不到的。实际气体效应使壁法线方向的法向雷诺应力增加了7–20%,翼展方向的法向雷诺应力提高了10–21%,这是由其对粘度分布的影响引起的。它还使雷诺剪切应力增加了5–8%。真实气体效应增加了粘性亚层和缓冲亚层(y*30)中的湍流动能耗散,但不增加外层中的湍流能量耗散。对这两种流体中的湍流粘度炒作进行了检验,结果表明,常数为Cμ=0.09的标准双函数RANS模型(k-ε和k-ω)在外层(y*>70)仍然适用,误差为±10%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of the Global Power and Propulsion Society
Journal of the Global Power and Propulsion Society Engineering-Industrial and Manufacturing Engineering
CiteScore
2.10
自引率
0.00%
发文量
21
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信