Groups whose Bipartite Divisor Graph for Character Degrees Has Five Vertices

IF 0.4 Q4 MATHEMATICS
S. A. Moosavi
{"title":"Groups whose Bipartite Divisor Graph for Character Degrees Has Five Vertices","authors":"S. A. Moosavi","doi":"10.52547/ijmsi.17.1.145","DOIUrl":null,"url":null,"abstract":". Let G be a finite group and cd ∗ ( G ) be the set of nonlinear irreducible character degrees of G . Suppose that ρ ( G ) denotes the set of primes dividing some element of cd ∗ ( G ). The bipartite divisor graph for the set of character degrees which is denoted by B ( G ), is a bipartite graph whose vertices are the disjoint union of ρ ( G ) and cd ∗ ( G ), and a vertex p ∈ ρ ( G ) is connected to a vertex a ∈ cd ∗ ( G ) if and only if p | a . In this paper, we investigate the structure of a group G whose graph B ( G ) has five vertices. Especially we show that all these groups are solvable.","PeriodicalId":43670,"journal":{"name":"Iranian Journal of Mathematical Sciences and Informatics","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Mathematical Sciences and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52547/ijmsi.17.1.145","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

. Let G be a finite group and cd ∗ ( G ) be the set of nonlinear irreducible character degrees of G . Suppose that ρ ( G ) denotes the set of primes dividing some element of cd ∗ ( G ). The bipartite divisor graph for the set of character degrees which is denoted by B ( G ), is a bipartite graph whose vertices are the disjoint union of ρ ( G ) and cd ∗ ( G ), and a vertex p ∈ ρ ( G ) is connected to a vertex a ∈ cd ∗ ( G ) if and only if p | a . In this paper, we investigate the structure of a group G whose graph B ( G ) has five vertices. Especially we show that all these groups are solvable.
特征度的二分整除图具有五个顶点的群
设G是一个有限群,cd*(G)是G的非线性不可约特征度的集合。假设ρ(G)表示素数集除以cd*(G)的某个元素。由B(G)表示的特征度集的二分除数图是一个二分图,其顶点是ρ(G)和cd*(G)的不相交并集,并且顶点p∈ρ。本文研究了图B(G)有五个顶点的群G的结构。特别是我们证明了所有这些群都是可解的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
20
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信