A review of single-phase pressure drop characteristics microchannels with bends

E. Junianto, J. Hendrarsakti
{"title":"A review of single-phase pressure drop characteristics microchannels with bends","authors":"E. Junianto, J. Hendrarsakti","doi":"10.14203/j.mev.2021.v12.38-44","DOIUrl":null,"url":null,"abstract":"Microfluidic use in various innovative research, many fields aimed at developing an application device related to handling fluid flows in miniature scale systems. On the other hand, on the use of micro-devices for fluid flow the existence of bends cannot be avoided. This research aims to make a comprehensive study of fluid flow characteristics through a microchannel with several possible bends. This study was conducted by comparing Reynolds number versus pressure drop in a serpentine microchannel to gain bends loss coefficient. The result showed that the fluid flow with Re 100 did not affect the pressure drop, but on the Reynolds number above that, the pressure drop was increased along with the appears of vortices in the outer and inner walls around the channel bends which causes an increase in an additional pressure drop. The other finding shows that the reduction in diameter bend tube can increase the pressure drop.","PeriodicalId":30530,"journal":{"name":"Journal of Mechatronics Electrical Power and Vehicular Technology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechatronics Electrical Power and Vehicular Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14203/j.mev.2021.v12.38-44","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Microfluidic use in various innovative research, many fields aimed at developing an application device related to handling fluid flows in miniature scale systems. On the other hand, on the use of micro-devices for fluid flow the existence of bends cannot be avoided. This research aims to make a comprehensive study of fluid flow characteristics through a microchannel with several possible bends. This study was conducted by comparing Reynolds number versus pressure drop in a serpentine microchannel to gain bends loss coefficient. The result showed that the fluid flow with Re 100 did not affect the pressure drop, but on the Reynolds number above that, the pressure drop was increased along with the appears of vortices in the outer and inner walls around the channel bends which causes an increase in an additional pressure drop. The other finding shows that the reduction in diameter bend tube can increase the pressure drop.
带弯管的微通道单相压降特性研究进展
微流体在各种创新研究中的应用,许多领域旨在开发一种与在微型系统中处理流体流动相关的应用设备。另一方面,在使用用于流体流动的微型装置时,不能避免弯曲的存在。本研究旨在对具有几种可能弯曲的微通道中的流体流动特性进行全面研究。这项研究是通过比较雷诺数与蛇形微通道中的压降来获得弯曲损失系数来进行的。结果表明,Re 100的流体流动不会影响压降,但在雷诺数高于雷诺数的情况下,压降随着通道弯曲周围外壁和内壁涡流的出现而增加,这会导致额外压降的增加。另一项发现表明,弯管直径的减小会增加压降。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.70
自引率
0.00%
发文量
10
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信