Characteristic of pointwise-recurrent maps on a dendrite

IF 0.4 Q4 MATHEMATICS
G. Su, T. Sun, Caihong Han, Bin Qin
{"title":"Characteristic of pointwise-recurrent maps on a dendrite","authors":"G. Su, T. Sun, Caihong Han, Bin Qin","doi":"10.1080/1726037X.2020.1779971","DOIUrl":null,"url":null,"abstract":"Abstract Let f be a continuous map on a dendrite D with f (D) = D. Denote by R(f ) and AP (f ) the set of recurrent points and the set of almost periodic points of f , respectively, and denote by ω(x, f ), Λ(x, f ), Γ(x, f ) and Ω(x, f ) the set of ω-limit points, the set of α-limit points, the set of γ-limit points and the set of weak ω-limit points of x under f , respectively. In this paper, we show that the following statements are equivalent: (1) D = R(f ). (2) D = AP (f ). (3) Ω(x, f ) = ω(x, f ) for any x ∈ D. (4) Ω(x, f ) = Γ(x, f ) for any x ∈ D. (5) f is equicontinuous. (6) [c, d] ⊄ Ω(x, f ) for any c, d,x ∈ D with c ≠ (7) Ω(x, f ) is minimal for any x ∈ D. (8) Card(Λ − 1(x, f ) ∩ (D−End(D))) < ∞ for any x ∈ D, where Λ − 1(x, f ) = {y : x ∈ Λ(y, f )}, End(D) is the set of endpoints of D and Card(A) is the cardinal number of set A. (9) If x ∈ Λ(y, f ) with x, y ∈ D, then y ∈ ω(x, f ). (10) Map h : x → ω(x, f ) (x ∈ D) is continuous and for any x, y ∈ D with x ∉ ω(y, f ), ω(x, f ) ≠ ω(y, f ). Besides, we also study characteristic of pointwise-recurrent maps on a dendrite with the number of branch points being finite.","PeriodicalId":42788,"journal":{"name":"Journal of Dynamical Systems and Geometric Theories","volume":"18 1","pages":"1 - 14"},"PeriodicalIF":0.4000,"publicationDate":"2020-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/1726037X.2020.1779971","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Dynamical Systems and Geometric Theories","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/1726037X.2020.1779971","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract Let f be a continuous map on a dendrite D with f (D) = D. Denote by R(f ) and AP (f ) the set of recurrent points and the set of almost periodic points of f , respectively, and denote by ω(x, f ), Λ(x, f ), Γ(x, f ) and Ω(x, f ) the set of ω-limit points, the set of α-limit points, the set of γ-limit points and the set of weak ω-limit points of x under f , respectively. In this paper, we show that the following statements are equivalent: (1) D = R(f ). (2) D = AP (f ). (3) Ω(x, f ) = ω(x, f ) for any x ∈ D. (4) Ω(x, f ) = Γ(x, f ) for any x ∈ D. (5) f is equicontinuous. (6) [c, d] ⊄ Ω(x, f ) for any c, d,x ∈ D with c ≠ (7) Ω(x, f ) is minimal for any x ∈ D. (8) Card(Λ − 1(x, f ) ∩ (D−End(D))) < ∞ for any x ∈ D, where Λ − 1(x, f ) = {y : x ∈ Λ(y, f )}, End(D) is the set of endpoints of D and Card(A) is the cardinal number of set A. (9) If x ∈ Λ(y, f ) with x, y ∈ D, then y ∈ ω(x, f ). (10) Map h : x → ω(x, f ) (x ∈ D) is continuous and for any x, y ∈ D with x ∉ ω(y, f ), ω(x, f ) ≠ ω(y, f ). Besides, we also study characteristic of pointwise-recurrent maps on a dendrite with the number of branch points being finite.
枝晶上逐点递归映射的特征
抽象让f是一个连续的地图与f (D) =树突D D表示R (f)和美联社(f)复发的设置点和f的组几乎周期点,分别表示,ω(x, f),Λ(x, f),Γ(x, f)和Ω(x, f)的集合ω极限点,α的极限点,γ的极限点和弱ω的极限点的x在f,分别。本文证明了下列表述是等价的:(1)D = R(f)。D = AP (f)。(3)对于任意x∈d Ω(x, f) = Ω(x, f);(4)对于任意x∈d Ω(x, f) = Γ(x, f); (5) f是等连续的。(6) (c, d)⊄Ω(x, f)对任何c, d, x∈d c≠(7)Ω(x, f)是最小的x∈d(8)卡(Λ−1 (x, f)∩(d−结束(d))) <∞任何x∈d,Λ−1 f (x) = {y: x∈Λ(y, f)}, (d)是一组端点的d和卡(A)是集的基数A(9)如果x∈Λ(y, f)与x, y∈d,那么y∈ω(x, f)。(10)映射h: x→ω(x, f) (x∈D)是连续的,且对于任意x, y∈D,∈x∈D,∈x∈x∈f,∈x∈f≠ω(y, f)。此外,我们还研究了分支点数目有限的树突上的点向循环映射的特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
7
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信