Isochronous is beautiful? Syllabic event detection in a neuro-inspired oscillatory model is facilitated by isochrony in speech

Mamady Nabe, J. Diard, J. Schwartz
{"title":"Isochronous is beautiful? Syllabic event detection in a neuro-inspired oscillatory model is facilitated by isochrony in speech","authors":"Mamady Nabe, J. Diard, J. Schwartz","doi":"10.21437/interspeech.2022-10426","DOIUrl":null,"url":null,"abstract":"Oscillation-based neuro-computational models of speech perception are grounded in the capacity of human brain oscillations to track the speech signal. Consequently, one would expect this tracking to be more efficient for more regular signals. In this pa-per, we address the question of the contribution of isochrony to event detection by neuro-computational models of speech perception. We consider a simple model of event detection proposed in the literature, based on oscillatory processes driven by the acoustic envelope, that was previously shown to efficiently detect syllabic events in various languages. We first evaluate its performance in the detection of syllabic events for French, and show that “perceptual centers” associated to vowel onsets are more robustly detected than syllable onsets. Then we show that isochrony in natural speech improves the performance of event detection in the oscillatory model. We also evaluate the model’s robustness to acoustic noise. Overall, these results show the importance of bottom-up resonance mechanism for event detection; however, they suggest that bottom-up processing of acoustic envelope is not able to perfectly detect events relevant to speech temporal segmentation, highlighting the potential and complementary role of top-down, predictive knowledge.","PeriodicalId":73500,"journal":{"name":"Interspeech","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interspeech","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21437/interspeech.2022-10426","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Oscillation-based neuro-computational models of speech perception are grounded in the capacity of human brain oscillations to track the speech signal. Consequently, one would expect this tracking to be more efficient for more regular signals. In this pa-per, we address the question of the contribution of isochrony to event detection by neuro-computational models of speech perception. We consider a simple model of event detection proposed in the literature, based on oscillatory processes driven by the acoustic envelope, that was previously shown to efficiently detect syllabic events in various languages. We first evaluate its performance in the detection of syllabic events for French, and show that “perceptual centers” associated to vowel onsets are more robustly detected than syllable onsets. Then we show that isochrony in natural speech improves the performance of event detection in the oscillatory model. We also evaluate the model’s robustness to acoustic noise. Overall, these results show the importance of bottom-up resonance mechanism for event detection; however, they suggest that bottom-up processing of acoustic envelope is not able to perfectly detect events relevant to speech temporal segmentation, highlighting the potential and complementary role of top-down, predictive knowledge.
等时是美丽的吗?语音中的等时性有助于神经振荡模型中的音节事件检测
基于振荡的语音感知神经计算模型基于人脑振荡跟踪语音信号的能力。因此,人们期望这种跟踪对于更规则的信号更有效。在这篇论文中,我们通过语音感知的神经计算模型来解决等时性对事件检测的贡献问题。我们考虑了文献中提出的一个简单的事件检测模型,该模型基于声包络驱动的振荡过程,先前已被证明可以有效地检测各种语言中的音节事件。我们首先评估了它在法语音节事件检测中的表现,并表明与元音起始点相关的“感知中心”比音节起始点检测得更稳健。然后,我们证明了自然语音中的等时性提高了振荡模型中事件检测的性能。我们还评估了该模型对声学噪声的鲁棒性。总体而言,这些结果表明了自下而上的共振机制对事件检测的重要性;然而,他们认为自下而上的声包络处理无法完美地检测与语音时间分割相关的事件,这突出了自上而下的预测知识的潜在和互补作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信