{"title":"Bounded solutions to systems of fractional discrete equations","authors":"J. Diblík","doi":"10.1515/anona-2022-0260","DOIUrl":null,"url":null,"abstract":"Abstract The article is concerned with systems of fractional discrete equations Δ α x ( n + 1 ) = F n ( n , x ( n ) , x ( n − 1 ) , … , x ( n 0 ) ) , n = n 0 , n 0 + 1 , … , {\\Delta }^{\\alpha }x\\left(n+1)={F}_{n}\\left(n,x\\left(n),x\\left(n-1),\\ldots ,x\\left({n}_{0})),\\hspace{1em}n={n}_{0},{n}_{0}+1,\\ldots , where n 0 ∈ Z {n}_{0}\\in {\\mathbb{Z}} , n n is an independent variable, Δ α {\\Delta }^{\\alpha } is an α \\alpha -order fractional difference, α ∈ R \\alpha \\in {\\mathbb{R}} , F n : { n } × R n − n 0 + 1 → R s {F}_{n}:\\left\\{n\\right\\}\\times {{\\mathbb{R}}}^{n-{n}_{0}+1}\\to {{\\mathbb{R}}}^{s} , s ⩾ 1 s\\geqslant 1 is a fixed integer, and x : { n 0 , n 0 + 1 , … } → R s x:\\left\\{{n}_{0},{n}_{0}+1,\\ldots \\right\\}\\to {{\\mathbb{R}}}^{s} is a dependent (unknown) variable. A retract principle is used to prove the existence of solutions with graphs remaining in a given domain for every n ⩾ n 0 n\\geqslant {n}_{0} , which then serves as a basis for further proving the existence of bounded solutions to a linear nonhomogeneous system of discrete equations Δ α x ( n + 1 ) = A ( n ) x ( n ) + δ ( n ) , n = n 0 , n 0 + 1 , … , {\\Delta }^{\\alpha }x\\left(n+1)=A\\left(n)x\\left(n)+\\delta \\left(n),\\hspace{1em}n={n}_{0},{n}_{0}+1,\\ldots , where A ( n ) A\\left(n) is a square matrix and δ ( n ) \\delta \\left(n) is a vector function. Illustrative examples accompany the statements derived, possible generalizations are discussed, and open problems for future research are formulated as well.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/anona-2022-0260","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 6
Abstract
Abstract The article is concerned with systems of fractional discrete equations Δ α x ( n + 1 ) = F n ( n , x ( n ) , x ( n − 1 ) , … , x ( n 0 ) ) , n = n 0 , n 0 + 1 , … , {\Delta }^{\alpha }x\left(n+1)={F}_{n}\left(n,x\left(n),x\left(n-1),\ldots ,x\left({n}_{0})),\hspace{1em}n={n}_{0},{n}_{0}+1,\ldots , where n 0 ∈ Z {n}_{0}\in {\mathbb{Z}} , n n is an independent variable, Δ α {\Delta }^{\alpha } is an α \alpha -order fractional difference, α ∈ R \alpha \in {\mathbb{R}} , F n : { n } × R n − n 0 + 1 → R s {F}_{n}:\left\{n\right\}\times {{\mathbb{R}}}^{n-{n}_{0}+1}\to {{\mathbb{R}}}^{s} , s ⩾ 1 s\geqslant 1 is a fixed integer, and x : { n 0 , n 0 + 1 , … } → R s x:\left\{{n}_{0},{n}_{0}+1,\ldots \right\}\to {{\mathbb{R}}}^{s} is a dependent (unknown) variable. A retract principle is used to prove the existence of solutions with graphs remaining in a given domain for every n ⩾ n 0 n\geqslant {n}_{0} , which then serves as a basis for further proving the existence of bounded solutions to a linear nonhomogeneous system of discrete equations Δ α x ( n + 1 ) = A ( n ) x ( n ) + δ ( n ) , n = n 0 , n 0 + 1 , … , {\Delta }^{\alpha }x\left(n+1)=A\left(n)x\left(n)+\delta \left(n),\hspace{1em}n={n}_{0},{n}_{0}+1,\ldots , where A ( n ) A\left(n) is a square matrix and δ ( n ) \delta \left(n) is a vector function. Illustrative examples accompany the statements derived, possible generalizations are discussed, and open problems for future research are formulated as well.