{"title":"Skew-amenability of topological groups","authors":"K. Juschenko, Friedrich Martin Schneider","doi":"10.4171/CMH/525","DOIUrl":null,"url":null,"abstract":"We study skew-amenable topological groups, i.e., those admitting a left-invariant mean on the space of bounded real-valued functions left-uniformly continuous in the sense of Bourbaki. We prove characterizations of skew-amenability for topological groups of isometries and automorphisms, clarify the connection with extensive amenability of group actions, establish a Folner-type characterization, and discuss closure properties of the class of skew-amenable topological groups. Moreover, we isolate a dynamical sufficient condition for skew-amenability and provide several concrete variations of this criterion in the context of transformation groups. These results are then used to decide skew-amenability for a number of examples of topological groups built from or related to Thompson's group $F$ and Monod's group of piecewise projective homeomorphisms of the real line.","PeriodicalId":50664,"journal":{"name":"Commentarii Mathematici Helvetici","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2020-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Commentarii Mathematici Helvetici","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/CMH/525","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 6
Abstract
We study skew-amenable topological groups, i.e., those admitting a left-invariant mean on the space of bounded real-valued functions left-uniformly continuous in the sense of Bourbaki. We prove characterizations of skew-amenability for topological groups of isometries and automorphisms, clarify the connection with extensive amenability of group actions, establish a Folner-type characterization, and discuss closure properties of the class of skew-amenable topological groups. Moreover, we isolate a dynamical sufficient condition for skew-amenability and provide several concrete variations of this criterion in the context of transformation groups. These results are then used to decide skew-amenability for a number of examples of topological groups built from or related to Thompson's group $F$ and Monod's group of piecewise projective homeomorphisms of the real line.
期刊介绍:
Commentarii Mathematici Helvetici (CMH) was established on the occasion of a meeting of the Swiss Mathematical Society in May 1928. The first volume was published in 1929. The journal soon gained international reputation and is one of the world''s leading mathematical periodicals.
Commentarii Mathematici Helvetici is covered in:
Mathematical Reviews (MR), Current Mathematical Publications (CMP), MathSciNet, Zentralblatt für Mathematik, Zentralblatt MATH Database, Science Citation Index (SCI), Science Citation Index Expanded (SCIE), CompuMath Citation Index (CMCI), Current Contents/Physical, Chemical & Earth Sciences (CC/PC&ES), ISI Alerting Services, Journal Citation Reports/Science Edition, Web of Science.