Convergence of Langevin-simulated annealing algorithms with multiplicative noise II: Total variation

IF 0.8 Q3 STATISTICS & PROBABILITY
Pierre Bras, G. Pagès
{"title":"Convergence of Langevin-simulated annealing algorithms with multiplicative noise II: Total variation","authors":"Pierre Bras, G. Pagès","doi":"10.1515/mcma-2023-2009","DOIUrl":null,"url":null,"abstract":"Abstract We study the convergence of Langevin-simulated annealing type algorithms with multiplicative noise, i.e. for V : R d → R V\\colon\\mathbb{R}^{d}\\to\\mathbb{R} a potential function to minimize, we consider the stochastic differential equation d ⁢ Y t = − σ ⁢ σ ⊤ ⁢ ∇ V ⁢ ( Y t ) ⁢ d ⁢ t + a ⁢ ( t ) ⁢ σ ⁢ ( Y t ) ⁢ d ⁢ W t + a ⁢ ( t ) 2 ⁢ Υ ⁢ ( Y t ) ⁢ d ⁢ t dY_{t}=-\\sigma\\sigma^{\\top}\\nabla V(Y_{t})\\,dt+a(t)\\sigma(Y_{t})\\,dW_{t}+a(t)^{2}\\Upsilon(Y_{t})\\,dt , where ( W t ) (W_{t}) is a Brownian motion, σ : R d → M d ⁢ ( R ) \\sigma\\colon\\mathbb{R}^{d}\\to\\mathcal{M}_{d}(\\mathbb{R}) is an adaptive (multiplicative) noise, a : R + → R + a\\colon\\mathbb{R}^{+}\\to\\mathbb{R}^{+} is a function decreasing to 0 and where Υ is a correction term. Allowing 𝜎 to depend on the position brings faster convergence in comparison with the classical Langevin equation d ⁢ Y t = − ∇ V ⁢ ( Y t ) ⁢ d ⁢ t + σ ⁢ d ⁢ W t dY_{t}=-\\nabla V(Y_{t})\\,dt+\\sigma\\,dW_{t} . In a previous paper, we established the convergence in L 1 L^{1} -Wasserstein distance of Y t Y_{t} and of its associated Euler scheme Y ¯ t \\bar{Y}_{t} to argmin ⁡ ( V ) \\operatorname{argmin}(V) with the classical schedule a ⁢ ( t ) = A ⁢ log − 1 / 2 ⁡ ( t ) a(t)=A\\log^{-1/2}(t) . In the present paper, we prove the convergence in total variation distance. The total variation case appears more demanding to deal with and requires regularization lemmas.","PeriodicalId":46576,"journal":{"name":"Monte Carlo Methods and Applications","volume":"29 1","pages":"203 - 219"},"PeriodicalIF":0.8000,"publicationDate":"2022-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Monte Carlo Methods and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/mcma-2023-2009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 4

Abstract

Abstract We study the convergence of Langevin-simulated annealing type algorithms with multiplicative noise, i.e. for V : R d → R V\colon\mathbb{R}^{d}\to\mathbb{R} a potential function to minimize, we consider the stochastic differential equation d ⁢ Y t = − σ ⁢ σ ⊤ ⁢ ∇ V ⁢ ( Y t ) ⁢ d ⁢ t + a ⁢ ( t ) ⁢ σ ⁢ ( Y t ) ⁢ d ⁢ W t + a ⁢ ( t ) 2 ⁢ Υ ⁢ ( Y t ) ⁢ d ⁢ t dY_{t}=-\sigma\sigma^{\top}\nabla V(Y_{t})\,dt+a(t)\sigma(Y_{t})\,dW_{t}+a(t)^{2}\Upsilon(Y_{t})\,dt , where ( W t ) (W_{t}) is a Brownian motion, σ : R d → M d ⁢ ( R ) \sigma\colon\mathbb{R}^{d}\to\mathcal{M}_{d}(\mathbb{R}) is an adaptive (multiplicative) noise, a : R + → R + a\colon\mathbb{R}^{+}\to\mathbb{R}^{+} is a function decreasing to 0 and where Υ is a correction term. Allowing 𝜎 to depend on the position brings faster convergence in comparison with the classical Langevin equation d ⁢ Y t = − ∇ V ⁢ ( Y t ) ⁢ d ⁢ t + σ ⁢ d ⁢ W t dY_{t}=-\nabla V(Y_{t})\,dt+\sigma\,dW_{t} . In a previous paper, we established the convergence in L 1 L^{1} -Wasserstein distance of Y t Y_{t} and of its associated Euler scheme Y ¯ t \bar{Y}_{t} to argmin ⁡ ( V ) \operatorname{argmin}(V) with the classical schedule a ⁢ ( t ) = A ⁢ log − 1 / 2 ⁡ ( t ) a(t)=A\log^{-1/2}(t) . In the present paper, we prove the convergence in total variation distance. The total variation case appears more demanding to deal with and requires regularization lemmas.
具有乘性噪声的langevin模拟退火算法的收敛性II:总变分
研究了具有乘性噪声的langevin模拟退火算法的收敛性,即对于V:R d→R V \colon\mathbb{R} ^{d}\to\mathbb{R}一个最小化的势函数,我们考虑随机微分方程d²Y t=- σ∑∑∞∞∞V(Y t)∑d∑t+a∑(t)∑∑(Y t)∑d∑W t+a∑(t)²∑(t)²{dY_t}=- \sigma\sigma{\top}\nabla V{(Y_t)}\,dt+a(t)²\sigma (Y_t){\,}dW_t{+a(t)}²{}\Upsilon (Y_t){\,dt,其中(W t) }(W_t){是布朗运动,σ:R d→M d²(R) }\sigma\colon\mathbb{R} ^{d}\to\mathcal{M} _d{(}\mathbb{R})是一个自适应(乘性)噪声,a: R +→R + a \colon\mathbb{R} ^{+}\to\mathbb{R} ^{+}是一个递减到0的函数,其中Υ是一个校正项。与经典朗之万方程d¹Y t=-∇V∑(Y t)∑d∑W t dY_t=- {}\nabla V{(Y_t)}\,dt+ \sigma \,{dW_t}相比,允许其依赖于位置带来了更快的收敛速度。在上一篇文章中,我们建立了在l1l ^{1} -Wasserstein距离下,Y t {Y_t}及其相关的欧拉格式Y¯t \bar{Y} _t{到argmin (V) }\operatorname{argmin} (V)的收敛性,其经典调度为a¹(t)= a²log -1/2(t) a(t)= a \log ^{-1/2}(t)。本文证明了该算法在总变差距离上的收敛性。全变分情况的处理难度更大,需要正则化引理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Monte Carlo Methods and Applications
Monte Carlo Methods and Applications STATISTICS & PROBABILITY-
CiteScore
1.20
自引率
22.20%
发文量
31
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信