{"title":"Analyzing visual imagery for emergency drone landing on unknown environments","authors":"O. Bektash, J. Naundrup, A. la Cour-Harbo","doi":"10.1177/17568293221106492","DOIUrl":null,"url":null,"abstract":"Autonomous landing is a fundamental aspect of drone operations which is being focused upon by the industry, with ever-increasing demands on safety. As the drones are likely to become indispensable vehicles in near future, they are expected to succeed in automatically recognizing a landing spot from the nearby points, maneuvering toward it, and ultimately, performing a safe landing. Accordingly, this paper investigates the idea of vision-based location detection on the ground for an automated emergency response system which can continuously monitor the environment and spot safe places when needed. A convolutional neural network which learns from image-based feature representation at multiple scales is introduced. The model takes the ground images, assign significance to various aspects in them and recognize the landing spots. The results provided support for the model, with accurate classification of ground image according to their visual content. They also demonstrate the feasibility of computationally inexpensive implementation of the model on a small computer that can be easily embedded on a drone.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/17568293221106492","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 3
Abstract
Autonomous landing is a fundamental aspect of drone operations which is being focused upon by the industry, with ever-increasing demands on safety. As the drones are likely to become indispensable vehicles in near future, they are expected to succeed in automatically recognizing a landing spot from the nearby points, maneuvering toward it, and ultimately, performing a safe landing. Accordingly, this paper investigates the idea of vision-based location detection on the ground for an automated emergency response system which can continuously monitor the environment and spot safe places when needed. A convolutional neural network which learns from image-based feature representation at multiple scales is introduced. The model takes the ground images, assign significance to various aspects in them and recognize the landing spots. The results provided support for the model, with accurate classification of ground image according to their visual content. They also demonstrate the feasibility of computationally inexpensive implementation of the model on a small computer that can be easily embedded on a drone.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.