Patrick Büchel, Michael Kratochwil, Maximilian Nagl, Daniel Rösch
{"title":"Deep calibration of financial models: turning theory into practice.","authors":"Patrick Büchel, Michael Kratochwil, Maximilian Nagl, Daniel Rösch","doi":"10.1007/s11147-021-09183-7","DOIUrl":null,"url":null,"abstract":"<p><p>The calibration of financial models is laborious, time-consuming and expensive, and needs to be performed frequently by financial institutions. Recently, the application of artificial neural networks (ANNs) for model calibration has gained interest. This paper provides the first comprehensive empirical study on the application of ANNs for calibration based on observed market data. We benchmark the performance of the ANN approach against a real-life calibration framework that is in action at a large financial institution. The ANN based calibration framework shows competitive calibration results, roughly four times faster with less computational efforts. Besides speed and efficiency, the resulting model parameters are found to be more stable over time, enabling more reliable risk reports and business decisions. Furthermore, the calibration framework involves multiple validation steps to counteract regulatory concerns regarding its practical application.</p>","PeriodicalId":45022,"journal":{"name":"Review of Derivatives Research","volume":"25 1","pages":"109-136"},"PeriodicalIF":0.7000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8367774/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Review of Derivatives Research","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1007/s11147-021-09183-7","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/8/17 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0
Abstract
The calibration of financial models is laborious, time-consuming and expensive, and needs to be performed frequently by financial institutions. Recently, the application of artificial neural networks (ANNs) for model calibration has gained interest. This paper provides the first comprehensive empirical study on the application of ANNs for calibration based on observed market data. We benchmark the performance of the ANN approach against a real-life calibration framework that is in action at a large financial institution. The ANN based calibration framework shows competitive calibration results, roughly four times faster with less computational efforts. Besides speed and efficiency, the resulting model parameters are found to be more stable over time, enabling more reliable risk reports and business decisions. Furthermore, the calibration framework involves multiple validation steps to counteract regulatory concerns regarding its practical application.
期刊介绍:
The proliferation of derivative assets during the past two decades is unprecedented. With this growth in derivatives comes the need for financial institutions, institutional investors, and corporations to use sophisticated quantitative techniques to take full advantage of the spectrum of these new financial instruments. Academic research has significantly contributed to our understanding of derivative assets and markets. The growth of derivative asset markets has been accompanied by a commensurate growth in the volume of scientific research. The Review of Derivatives Research provides an international forum for researchers involved in the general areas of derivative assets. The Review publishes high-quality articles dealing with the pricing and hedging of derivative assets on any underlying asset (commodity, interest rate, currency, equity, real estate, traded or non-traded, etc.). Specific topics include but are not limited to: econometric analyses of derivative markets (efficiency, anomalies, performance, etc.) analysis of swap markets market microstructure and volatility issues regulatory and taxation issues credit risk new areas of applications such as corporate finance (capital budgeting, debt innovations), international trade (tariffs and quotas), banking and insurance (embedded options, asset-liability management) risk-sharing issues and the design of optimal derivative securities risk management, management and control valuation and analysis of the options embedded in capital projects valuation and hedging of exotic options new areas for further development (i.e. natural resources, environmental economics. The Review has a double-blind refereeing process. In contrast to the delays in the decision making and publication processes of many current journals, the Review will provide authors with an initial decision within nine weeks of receipt of the manuscript and a goal of publication within six months after acceptance. Finally, a section of the journal is available for rapid publication on `hot'' issues in the market, small technical pieces, and timely essays related to pending legislation and policy. Officially cited as: Rev Deriv Res