Simulation of Lueders bands using regularized large strain elasto-plasticity

IF 1.1 4区 工程技术 Q3 MATERIALS SCIENCE, CHARACTERIZATION & TESTING
M. Mucha, B. Wcisło, J. Pamin
{"title":"Simulation of Lueders bands using regularized large strain elasto-plasticity","authors":"M. Mucha, B. Wcisło, J. Pamin","doi":"10.24423/AOM.3647","DOIUrl":null,"url":null,"abstract":"This paper deals with the numerical simulation of an instability phenomenon called Lueders bands with two regularized material models: viscoplasticity and gradient-enhanced plasticity. The models are based on large strain kinematics and temperature-dependence is incorporated. The Huber–Mises–Hencky yield condition and multi-branch hardening are employed. After a brief presentation of the constitutive description, test computations are performed using AceGen and AceFEM symbolic packages for Wolfram Mathematica. The first benchmark is a rectangular tensile plate in plane strain isothermal conditions. For the viscoplastic model, simulation results for different values of viscosity, loading duration and enforced displacement are compared. For the gradient model different internal lengths are used. Mesh sensitivity of the results and the influence of boundary conditions are also examined. Next to the Lueders-type response to a softening-hardening yield strength function, an additional softening stage leading to failure is also considered. The second example concerns a bone-shape sample under tension, for which, next to mesh sensitivity and the effect of regularization, the influence of heat conduction on simulation results is evaluated.","PeriodicalId":8280,"journal":{"name":"Archives of Mechanics","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2021-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.24423/AOM.3647","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 1

Abstract

This paper deals with the numerical simulation of an instability phenomenon called Lueders bands with two regularized material models: viscoplasticity and gradient-enhanced plasticity. The models are based on large strain kinematics and temperature-dependence is incorporated. The Huber–Mises–Hencky yield condition and multi-branch hardening are employed. After a brief presentation of the constitutive description, test computations are performed using AceGen and AceFEM symbolic packages for Wolfram Mathematica. The first benchmark is a rectangular tensile plate in plane strain isothermal conditions. For the viscoplastic model, simulation results for different values of viscosity, loading duration and enforced displacement are compared. For the gradient model different internal lengths are used. Mesh sensitivity of the results and the influence of boundary conditions are also examined. Next to the Lueders-type response to a softening-hardening yield strength function, an additional softening stage leading to failure is also considered. The second example concerns a bone-shape sample under tension, for which, next to mesh sensitivity and the effect of regularization, the influence of heat conduction on simulation results is evaluated.
基于正则化大应变弹塑性的Lueders带模拟
本文用粘塑性和梯度增强塑性两种正则化材料模型对一种称为Lueders带的不稳定现象进行了数值模拟。这些模型基于大应变运动学,并结合了温度相关性。采用Huber–Mises–Hencky屈服条件和多分支硬化。在简要介绍了本构描述后,使用Wolfram Mathematica的AceGen和AceFEM符号包进行了试验计算。第一个基准是平面应变等温条件下的矩形拉伸板。对于粘塑性模型,比较了不同粘度值、加载持续时间和强制位移的模拟结果。对于梯度模型,使用不同的内部长度。还考察了网格灵敏度的结果和边界条件的影响。除了对软化硬化屈服强度函数的Lueders型响应外,还考虑了导致失效的额外软化阶段。第二个例子涉及张力下的骨骼形状样本,针对该样本,除了网格敏感性和正则化效应外,还评估了热传导对模拟结果的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Archives of Mechanics
Archives of Mechanics 工程技术-材料科学:表征与测试
CiteScore
1.40
自引率
12.50%
发文量
0
审稿时长
>12 weeks
期刊介绍: Archives of Mechanics provides a forum for original research on mechanics of solids, fluids and discrete systems, including the development of mathematical methods for solving mechanical problems. The journal encompasses all aspects of the field, with the emphasis placed on: -mechanics of materials: elasticity, plasticity, time-dependent phenomena, phase transformation, damage, fracture; physical and experimental foundations, micromechanics, thermodynamics, instabilities; -methods and problems in continuum mechanics: general theory and novel applications, thermomechanics, structural analysis, porous media, contact problems; -dynamics of material systems; -fluid flows and interactions with solids. Papers published in the Archives should contain original contributions dealing with theoretical, experimental, or numerical aspects of mechanical problems listed above. The journal publishes also current announcements and information about important scientific events of possible interest to its readers, like conferences, congresses, symposia, work-shops, courses, etc. Occasionally, special issues of the journal may be devoted to publication of all or selected papers presented at international conferences or other scientific meetings. However, all papers intended for such an issue are subjected to the usual reviewing and acceptance procedure.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信