Data-driven iterative learning trajectory tracking control for wheeled mobile robot under constraint of velocity saturation

IF 1.5 Q3 AUTOMATION & CONTROL SYSTEMS
Xiaodong Bu, Xisheng Dai, Rui Hou
{"title":"Data-driven iterative learning trajectory tracking control for wheeled mobile robot under constraint of velocity saturation","authors":"Xiaodong Bu,&nbsp;Xisheng Dai,&nbsp;Rui Hou","doi":"10.1049/csy2.12091","DOIUrl":null,"url":null,"abstract":"<p>Considering the wheeled mobile robot (WMR) tracking problem with velocity saturation, we developed a data-driven iterative learning double loop control method with constraints. First, the authors designed an outer loop controller to provide virtual velocity for the inner loop according to the position and pose tracking error of the WMR kinematic model. Second, the authors employed dynamic linearisation to transform the dynamic model into an online data-driven model along the iterative domain. Based on the measured input and output data of the dynamic model, the authors identified the parameters of the inner loop controller. The authors considered the velocity saturation constraints; we adjusted the output velocity of the WMR online, providing effective solutions to the problem of velocity saltation and the saturation constraint in the tracking process. Notably, the inner loop controller only uses the output data and input of the dynamic model, which not only enables the reliable control of WMR trajectory tracking, but also avoids the influence of inaccurate model identification processes on the tracking performance. The authors analysed the algorithm's convergence in theory, and the results show that the tracking errors of position, angle and velocity can converge to zero in the iterative domain. Finally, the authors used a simulation to demonstrate the effectiveness of the algorithm.</p>","PeriodicalId":34110,"journal":{"name":"IET Cybersystems and Robotics","volume":"5 2","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/csy2.12091","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Cybersystems and Robotics","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/csy2.12091","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Considering the wheeled mobile robot (WMR) tracking problem with velocity saturation, we developed a data-driven iterative learning double loop control method with constraints. First, the authors designed an outer loop controller to provide virtual velocity for the inner loop according to the position and pose tracking error of the WMR kinematic model. Second, the authors employed dynamic linearisation to transform the dynamic model into an online data-driven model along the iterative domain. Based on the measured input and output data of the dynamic model, the authors identified the parameters of the inner loop controller. The authors considered the velocity saturation constraints; we adjusted the output velocity of the WMR online, providing effective solutions to the problem of velocity saltation and the saturation constraint in the tracking process. Notably, the inner loop controller only uses the output data and input of the dynamic model, which not only enables the reliable control of WMR trajectory tracking, but also avoids the influence of inaccurate model identification processes on the tracking performance. The authors analysed the algorithm's convergence in theory, and the results show that the tracking errors of position, angle and velocity can converge to zero in the iterative domain. Finally, the authors used a simulation to demonstrate the effectiveness of the algorithm.

Abstract Image

速度饱和约束下轮式移动机器人的数据驱动迭代学习轨迹跟踪控制
针对具有速度饱和的轮式移动机器人跟踪问题,提出了一种带约束的数据驱动迭代学习双环控制方法。首先,根据WMR运动模型的位置和位姿跟踪误差,设计了外环控制器,为内环提供虚拟速度;其次,采用动态线性化方法,沿迭代域将动态模型转换为在线数据驱动模型。根据动态模型的实测输入输出数据,确定了内环控制器的参数。作者考虑了速度饱和度约束;在线调整WMR的输出速度,有效解决了跟踪过程中速度波动和饱和约束的问题。值得注意的是,内环控制器只使用动态模型的输出数据和输入数据,不仅可以可靠地控制WMR轨迹跟踪,还可以避免模型识别过程不准确对跟踪性能的影响。从理论上分析了该算法的收敛性,结果表明,位置、角度和速度的跟踪误差在迭代域中收敛到零。最后,通过仿真验证了该算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IET Cybersystems and Robotics
IET Cybersystems and Robotics Computer Science-Information Systems
CiteScore
3.70
自引率
0.00%
发文量
31
审稿时长
34 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信