{"title":"High-Sensitivity All-Optical Pressure Sensor Based on Photonic-Crystal Nanotechnology","authors":"Kouddad Elhachemi, Dekkiche Leila","doi":"10.1007/s10946-023-10132-y","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, we investigate a new design of a high-sensitivity photonic-crystal pressure sensor (PCPS). The basic structure consists of a triangular array of silicon rods suspended in air. The designed sensor comprises two quasilinear waveguides that are coupled through a resonant cavity. The detection principle is based on the change in the refractive index of the Si material as a function of the pressure variation within the range of 0 to 3 GPa, resulting in a significant shift in the wavelength of the proposed sensor. The sensor offers high sensitivity of approximately 18.2 nm/ GPa, along with very fast response, high-quality factor, and ultra-compact size. The proposed design is reliable and simple to be integrated into various detection applications.</p></div>","PeriodicalId":663,"journal":{"name":"Journal of Russian Laser Research","volume":"44 3","pages":"284 - 288"},"PeriodicalIF":0.7000,"publicationDate":"2023-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Russian Laser Research","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10946-023-10132-y","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, we investigate a new design of a high-sensitivity photonic-crystal pressure sensor (PCPS). The basic structure consists of a triangular array of silicon rods suspended in air. The designed sensor comprises two quasilinear waveguides that are coupled through a resonant cavity. The detection principle is based on the change in the refractive index of the Si material as a function of the pressure variation within the range of 0 to 3 GPa, resulting in a significant shift in the wavelength of the proposed sensor. The sensor offers high sensitivity of approximately 18.2 nm/ GPa, along with very fast response, high-quality factor, and ultra-compact size. The proposed design is reliable and simple to be integrated into various detection applications.
期刊介绍:
The journal publishes original, high-quality articles that follow new developments in all areas of laser research, including:
laser physics;
laser interaction with matter;
properties of laser beams;
laser thermonuclear fusion;
laser chemistry;
quantum and nonlinear optics;
optoelectronics;
solid state, gas, liquid, chemical, and semiconductor lasers.