PENENTUAN CADANGAN PREMI ASURANSI DWIGUNA MENGGUNAKAN METODE ILLINOIS BERDASARKAN HUKUM MORTALITAS WEIBULL

Ayu Eka Fanny Devi, I. N. Widana, Ketut Jayanegara
{"title":"PENENTUAN CADANGAN PREMI ASURANSI DWIGUNA MENGGUNAKAN METODE ILLINOIS BERDASARKAN HUKUM MORTALITAS WEIBULL","authors":"Ayu Eka Fanny Devi, I. N. Widana, Ketut Jayanegara","doi":"10.24843/mtk.2021.v10.i04.p347","DOIUrl":null,"url":null,"abstract":"Endowment insurance provides protection benefit and saving benefits. In the endowment insurance the insured party (insurance participant) must be paid the premiums. In addition to premiums, there is also policy value, which is sum of money that must be collected by the company in preparation for claim payment. The purpose of this study was to determine calculation of policy value in endowment insurance using Illinois method based on Weibull Mortality Law. In this study used secondary data from United States Life Table in the form of mortality probability data. Calculation value using Weibull mortality law, then the policy value calculated by Illinois method. The result of this study is policy value using Illinois Method based on Weibull Mortality Law is bigger than policy value using Illinois method without Weibull mortality law in the first year until year 20th. After year 20th, the policy value using Illinois method based on Weibull mortality law is smaller than policy value using Illinois method without Weibull mortality law, while at the end of the insurance year which is year 30th, the policy value with or without Weibull mortality law generates the same value.","PeriodicalId":11600,"journal":{"name":"E-Jurnal Matematika","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"E-Jurnal Matematika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24843/mtk.2021.v10.i04.p347","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Endowment insurance provides protection benefit and saving benefits. In the endowment insurance the insured party (insurance participant) must be paid the premiums. In addition to premiums, there is also policy value, which is sum of money that must be collected by the company in preparation for claim payment. The purpose of this study was to determine calculation of policy value in endowment insurance using Illinois method based on Weibull Mortality Law. In this study used secondary data from United States Life Table in the form of mortality probability data. Calculation value using Weibull mortality law, then the policy value calculated by Illinois method. The result of this study is policy value using Illinois Method based on Weibull Mortality Law is bigger than policy value using Illinois method without Weibull mortality law in the first year until year 20th. After year 20th, the policy value using Illinois method based on Weibull mortality law is smaller than policy value using Illinois method without Weibull mortality law, while at the end of the insurance year which is year 30th, the policy value with or without Weibull mortality law generates the same value.
根据WEIBULL死亡率法,确定将采用伊利诺斯州的方法的二维保险费储备
养老保险提供保障利益和储蓄利益。参加养老保险,必须由被保险人(参保人)缴纳保险费。除了保费之外,还有保单价值,这是公司为准备索赔支付而必须收取的一笔钱。本研究的目的是在Weibull死亡率定律的基础上,利用Illinois方法确定养老保险保单价值的计算。本研究采用美国生命表的二次数据,以死亡率概率数据的形式进行。采用威布尔死亡率法计算保单价值,然后采用伊利诺伊法计算保单价值。研究结果表明,第一年至第20年,采用基于Weibull死亡率法的伊利诺伊法的政策价值大于不采用Weibull死亡率法的伊利诺伊法的政策价值。在第20年后,基于威布尔死亡率定律的伊利诺伊法的保单价值小于不考虑威布尔死亡率定律的伊利诺伊法的保单价值,而在保险年度结束时,即第30年,无论是否考虑威布尔死亡率定律,保单价值都产生相同的价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
34
审稿时长
24 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信