Hydro-disk-type of electrorheological brakes for small mobile robots

IF 5.3 Q1 ENGINEERING, MECHANICAL
Takanori Togawa, Takuma Tachibana, Yutaka Tanaka, Jinghui Peng
{"title":"Hydro-disk-type of electrorheological brakes for small mobile robots","authors":"Takanori Togawa, Takuma Tachibana, Yutaka Tanaka, Jinghui Peng","doi":"10.1504/ijhm.2021.10039229","DOIUrl":null,"url":null,"abstract":"In micromouse competitions, small autonomous robots move in a maze and turn into corners with steep angles at high speeds. However, the recent competition was marked by speeding up. Generally, driving performance is limited through only the motor current control braking. Therefore, in this study, we developed a mechanical brake device using electrorheological fluid (ER fluid). Around the robot's drive, this brake device is connected to the DC motor through gears, and when the robot decelerates, the decelerating time is shortened if the ER brake is used together with the electric DC motor brake, so the deceleration time before a corner is shortened. Thus, the movement time from start of the maze to the goal is also shortened. Aiming at improving the performance of small robots that participate in micromouse competitions, we reported the basic research, performance evaluation, and brake design of a small brake that uses ER fluid.","PeriodicalId":29937,"journal":{"name":"International Journal of Hydromechatronics","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2021-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Hydromechatronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijhm.2021.10039229","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 5

Abstract

In micromouse competitions, small autonomous robots move in a maze and turn into corners with steep angles at high speeds. However, the recent competition was marked by speeding up. Generally, driving performance is limited through only the motor current control braking. Therefore, in this study, we developed a mechanical brake device using electrorheological fluid (ER fluid). Around the robot's drive, this brake device is connected to the DC motor through gears, and when the robot decelerates, the decelerating time is shortened if the ER brake is used together with the electric DC motor brake, so the deceleration time before a corner is shortened. Thus, the movement time from start of the maze to the goal is also shortened. Aiming at improving the performance of small robots that participate in micromouse competitions, we reported the basic research, performance evaluation, and brake design of a small brake that uses ER fluid.
用于小型移动机器人的液压盘式电流变制动器
在微型机器人比赛中,小型自主机器人在迷宫中移动,并以高速进入陡峭角度的角落。然而,最近的比赛速度加快了。通常,仅通过电机电流控制制动来限制驾驶性能。因此,在本研究中,我们开发了一种使用电流变液(ER液)的机械制动装置。在机器人的驱动器周围,该制动装置通过齿轮与直流电机相连,当机器人减速时,如果ER制动器与直流电机电动制动器一起使用,则减速时间会缩短,因此缩短了转弯前的减速时间。因此,从迷宫开始到目标的移动时间也缩短了。为了提高参加微电机比赛的小型机器人的性能,我们报道了一种使用ER流体的小型制动器的基础研究、性能评估和制动器设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.60
自引率
0.00%
发文量
32
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信