Mirsaeid Sarollahi, Mohammad Zamani Alavijeh, Manal A. Aldawsari, Rohith Allaparthi, Reem Alhelais, M. Refaei, Md Helal Uddin Maruf, M. Ware
{"title":"Modeling of Λ-graded InxGa1−xN solar cells: comparison of strained and relaxed features","authors":"Mirsaeid Sarollahi, Mohammad Zamani Alavijeh, Manal A. Aldawsari, Rohith Allaparthi, Reem Alhelais, M. Refaei, Md Helal Uddin Maruf, M. Ware","doi":"10.1117/1.JPE.12.022205","DOIUrl":null,"url":null,"abstract":"Abstract. The optical properties of Λ-graded indium gallium nitride (InGaN) solar cells are studied. Graded InGaN well structures with the indium composition increasing to xmax and then decreasing in a Λ-shaped pattern have been designed. Through polarization doping, this naturally creates alternating p- and n-type regions. Separate structures are designed by varying the indium alloy profile from GaN to maximum indium concentrations ranging from 20% to 90%, while maintaining a constant overall structure thickness of 100 nm. The solar cell parameters under fully strained and relaxed conditions are considered. The results show that a maximum efficiency of ≅5.5 % under fully strained condition occurs for xmax = 60 % . Solar cell efficiency under relaxed conditions increases to a maximum of 8.3% for xmax = 90 % . Vegard’s law predicts the bandgap under relaxed conditions, whereas a Vegard-like law is empirically determined from the output of nextnano™ for varying indium compositions to calculate the solar cell parameters under strain.","PeriodicalId":16781,"journal":{"name":"Journal of Photonics for Energy","volume":"12 1","pages":"022205 - 022205"},"PeriodicalIF":1.5000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Photonics for Energy","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1117/1.JPE.12.022205","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2
Abstract
Abstract. The optical properties of Λ-graded indium gallium nitride (InGaN) solar cells are studied. Graded InGaN well structures with the indium composition increasing to xmax and then decreasing in a Λ-shaped pattern have been designed. Through polarization doping, this naturally creates alternating p- and n-type regions. Separate structures are designed by varying the indium alloy profile from GaN to maximum indium concentrations ranging from 20% to 90%, while maintaining a constant overall structure thickness of 100 nm. The solar cell parameters under fully strained and relaxed conditions are considered. The results show that a maximum efficiency of ≅5.5 % under fully strained condition occurs for xmax = 60 % . Solar cell efficiency under relaxed conditions increases to a maximum of 8.3% for xmax = 90 % . Vegard’s law predicts the bandgap under relaxed conditions, whereas a Vegard-like law is empirically determined from the output of nextnano™ for varying indium compositions to calculate the solar cell parameters under strain.
期刊介绍:
The Journal of Photonics for Energy publishes peer-reviewed papers covering fundamental and applied research areas focused on the applications of photonics for renewable energy harvesting, conversion, storage, distribution, monitoring, consumption, and efficient usage.