Modeling of Λ-graded InxGa1−xN solar cells: comparison of strained and relaxed features

IF 1.5 4区 工程技术 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY
Mirsaeid Sarollahi, Mohammad Zamani Alavijeh, Manal A. Aldawsari, Rohith Allaparthi, Reem Alhelais, M. Refaei, Md Helal Uddin Maruf, M. Ware
{"title":"Modeling of Λ-graded InxGa1−xN solar cells: comparison of strained and relaxed features","authors":"Mirsaeid Sarollahi, Mohammad Zamani Alavijeh, Manal A. Aldawsari, Rohith Allaparthi, Reem Alhelais, M. Refaei, Md Helal Uddin Maruf, M. Ware","doi":"10.1117/1.JPE.12.022205","DOIUrl":null,"url":null,"abstract":"Abstract. The optical properties of Λ-graded indium gallium nitride (InGaN) solar cells are studied. Graded InGaN well structures with the indium composition increasing to xmax and then decreasing in a Λ-shaped pattern have been designed. Through polarization doping, this naturally creates alternating p- and n-type regions. Separate structures are designed by varying the indium alloy profile from GaN to maximum indium concentrations ranging from 20% to 90%, while maintaining a constant overall structure thickness of 100 nm. The solar cell parameters under fully strained and relaxed conditions are considered. The results show that a maximum efficiency of ≅5.5  %   under fully strained condition occurs for xmax  =  60  %  . Solar cell efficiency under relaxed conditions increases to a maximum of 8.3% for xmax  =  90  %  . Vegard’s law predicts the bandgap under relaxed conditions, whereas a Vegard-like law is empirically determined from the output of nextnano™ for varying indium compositions to calculate the solar cell parameters under strain.","PeriodicalId":16781,"journal":{"name":"Journal of Photonics for Energy","volume":"12 1","pages":"022205 - 022205"},"PeriodicalIF":1.5000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Photonics for Energy","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1117/1.JPE.12.022205","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2

Abstract

Abstract. The optical properties of Λ-graded indium gallium nitride (InGaN) solar cells are studied. Graded InGaN well structures with the indium composition increasing to xmax and then decreasing in a Λ-shaped pattern have been designed. Through polarization doping, this naturally creates alternating p- and n-type regions. Separate structures are designed by varying the indium alloy profile from GaN to maximum indium concentrations ranging from 20% to 90%, while maintaining a constant overall structure thickness of 100 nm. The solar cell parameters under fully strained and relaxed conditions are considered. The results show that a maximum efficiency of ≅5.5  %   under fully strained condition occurs for xmax  =  60  %  . Solar cell efficiency under relaxed conditions increases to a maximum of 8.3% for xmax  =  90  %  . Vegard’s law predicts the bandgap under relaxed conditions, whereas a Vegard-like law is empirically determined from the output of nextnano™ for varying indium compositions to calculate the solar cell parameters under strain.
∧梯度InxGa1−xN太阳能电池的建模:应变和弛豫特性的比较
摘要研究了∧梯度氮化铟镓(InGaN)太阳能电池的光学特性。设计了铟组成增加到xmax,然后以∧形图案减少的渐变InGaN阱结构。通过极化掺杂,这自然会产生交替的p型和n型区域。通过将铟合金轮廓从GaN改变到20%至90%的最大铟浓度,同时保持100nm的恒定总结构厚度,来设计单独的结构。考虑了在完全应变和松弛条件下的太阳能电池参数。结果表明,最大效率为  %   xmax出现完全应变状态  =  60  %  . 在宽松条件下,xmax的太阳能电池效率最高可达8.3%  =  90  %  . 维加定律预测了松弛条件下的带隙,而类维加定律是根据nextano的输出经验确定的™ 以计算应变下的太阳能电池参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Photonics for Energy
Journal of Photonics for Energy MATERIALS SCIENCE, MULTIDISCIPLINARY-OPTICS
CiteScore
3.20
自引率
5.90%
发文量
28
审稿时长
>12 weeks
期刊介绍: The Journal of Photonics for Energy publishes peer-reviewed papers covering fundamental and applied research areas focused on the applications of photonics for renewable energy harvesting, conversion, storage, distribution, monitoring, consumption, and efficient usage.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信